MHB Solving for dy/dx: $\sqrt{y}\cos^2{\sqrt{y}}$

  • Thread starter Thread starter karush
  • Start date Start date
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\displaystyle
\d{y}{x}=\frac{1}{7}\sqrt{y}\cos^2{\sqrt{y}} \\
$
then
$\displaystyle dy=\frac{1}{7}\sqrt{y}\cos^2{\sqrt{y}} \, dx$
and then
$\displaystyle \frac{dy}{\frac{1}{7}\sqrt{y}\cos^2{\sqrt{y}} }=\frac{1}{7} \, dx$
and then ?
 
Physics news on Phys.org
karush said:
$\displaystyle
\d{y}{x}=\frac{1}{7}\sqrt{y}\cos^2{\sqrt{y}} \\
$
then
$\displaystyle dy=\frac{1}{7}\sqrt{y}\cos^2{\sqrt{y}} \, dx$
and then
$\displaystyle \frac{dy}{\frac{1}{7}\sqrt{y}\cos^2{\sqrt{y}} }=\frac{1}{7} \, dx$
and then ?

First of all, as you have kept the $\displaystyle \begin{align*} \frac{1}{7} \end{align*}$ on the RHS you should NOT have divided it on the left. You should have

$\displaystyle \begin{align*} \int{ \frac{\mathrm{d}y}{\sqrt{y}\,\cos^2{\left( \sqrt{y} \right) }} } &= \int{ \frac{1}{7}\,\mathrm{d}x } \\ \int{ \frac{\mathrm{d}y}{2\,\sqrt{y}\,\cos^2{ \left( \sqrt{y} \right) } } } &= \int{ \frac{1}{14}\,\mathrm{d}x } \end{align*}$

Substitute $\displaystyle \begin{align*} u = \sqrt{y} \implies \mathrm{d}u = \frac{\mathrm{d}y}{2\,\sqrt{y}} \end{align*}$ giving

$\displaystyle \begin{align*} \int{ \frac{\mathrm{d}u}{\cos^2{ \left( u \right) } } } &= \int{ \frac{1}{14}\,\mathrm{d}x } \end{align*}$

These should both be easy to integrate now.
 
\begin{align*}\displaystyle
\int{ \frac{{d}u}{\cos^2{ \left( u \right) } } } &= \int{ \frac{1}{14}\, {d}x }
\end{align*}
$\textit{using the standard integrals}$

$\displaystyle\tan\left({u}\right)=\frac{x}{14}$

$u = \sqrt{y}$

$\displaystyle\tan\left({ \sqrt{y}}\right)=\frac{x}{14}$

$\textit{done ?}$
 
karush said:
\begin{align*}\displaystyle
\int{ \frac{{d}u}{\cos^2{ \left( u \right) } } } &= \int{ \frac{1}{14}\, {d}x }
\end{align*}
$\textit{using the standard integrals}$

$\displaystyle\tan\left({u}\right)=\frac{x}{14}$

$u = \sqrt{y}$

$\displaystyle\tan\left({ \sqrt{y}}\right)=\frac{x}{14}$

$\textit{done ?}$

Plus a constant.
 
Prove It said:
Plus a constant.
$\displaystyle\tan\left({ \sqrt{y}}\right)=\frac{x}{14}+C$

really?
 
karush said:
$\displaystyle\tan\left({ \sqrt{y}}\right)=\frac{x}{14}+C$

really?

Technically as you have integrated on both sides, both sides need an integration constant, but since they can then be combined on one side, yes what you have here is correct.

You could then solve for y if you really wanted to...
 
too lazy.. I leave it the way it is.😎
 

Similar threads

Replies
4
Views
1K
Replies
6
Views
3K
Replies
3
Views
1K
Replies
8
Views
3K
Replies
12
Views
2K
Back
Top