MHB Solving for dy/dx: $\sqrt{y}\cos^2{\sqrt{y}}$

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The discussion revolves around solving the differential equation dy/dx = (1/7)√y cos²(√y). Participants clarify the integration process, emphasizing the importance of correctly handling constants during integration. The substitution u = √y is suggested to simplify the integration. The final result is expressed as tan(√y) = x/14 + C, with a note that both sides of the equation should technically include an integration constant. The conversation concludes with an acknowledgment of the solution's correctness, albeit with a casual remark about not wanting to solve for y explicitly.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\displaystyle
\d{y}{x}=\frac{1}{7}\sqrt{y}\cos^2{\sqrt{y}} \\
$
then
$\displaystyle dy=\frac{1}{7}\sqrt{y}\cos^2{\sqrt{y}} \, dx$
and then
$\displaystyle \frac{dy}{\frac{1}{7}\sqrt{y}\cos^2{\sqrt{y}} }=\frac{1}{7} \, dx$
and then ?
 
Physics news on Phys.org
karush said:
$\displaystyle
\d{y}{x}=\frac{1}{7}\sqrt{y}\cos^2{\sqrt{y}} \\
$
then
$\displaystyle dy=\frac{1}{7}\sqrt{y}\cos^2{\sqrt{y}} \, dx$
and then
$\displaystyle \frac{dy}{\frac{1}{7}\sqrt{y}\cos^2{\sqrt{y}} }=\frac{1}{7} \, dx$
and then ?

First of all, as you have kept the $\displaystyle \begin{align*} \frac{1}{7} \end{align*}$ on the RHS you should NOT have divided it on the left. You should have

$\displaystyle \begin{align*} \int{ \frac{\mathrm{d}y}{\sqrt{y}\,\cos^2{\left( \sqrt{y} \right) }} } &= \int{ \frac{1}{7}\,\mathrm{d}x } \\ \int{ \frac{\mathrm{d}y}{2\,\sqrt{y}\,\cos^2{ \left( \sqrt{y} \right) } } } &= \int{ \frac{1}{14}\,\mathrm{d}x } \end{align*}$

Substitute $\displaystyle \begin{align*} u = \sqrt{y} \implies \mathrm{d}u = \frac{\mathrm{d}y}{2\,\sqrt{y}} \end{align*}$ giving

$\displaystyle \begin{align*} \int{ \frac{\mathrm{d}u}{\cos^2{ \left( u \right) } } } &= \int{ \frac{1}{14}\,\mathrm{d}x } \end{align*}$

These should both be easy to integrate now.
 
\begin{align*}\displaystyle
\int{ \frac{{d}u}{\cos^2{ \left( u \right) } } } &= \int{ \frac{1}{14}\, {d}x }
\end{align*}
$\textit{using the standard integrals}$

$\displaystyle\tan\left({u}\right)=\frac{x}{14}$

$u = \sqrt{y}$

$\displaystyle\tan\left({ \sqrt{y}}\right)=\frac{x}{14}$

$\textit{done ?}$
 
karush said:
\begin{align*}\displaystyle
\int{ \frac{{d}u}{\cos^2{ \left( u \right) } } } &= \int{ \frac{1}{14}\, {d}x }
\end{align*}
$\textit{using the standard integrals}$

$\displaystyle\tan\left({u}\right)=\frac{x}{14}$

$u = \sqrt{y}$

$\displaystyle\tan\left({ \sqrt{y}}\right)=\frac{x}{14}$

$\textit{done ?}$

Plus a constant.
 
Prove It said:
Plus a constant.
$\displaystyle\tan\left({ \sqrt{y}}\right)=\frac{x}{14}+C$

really?
 
karush said:
$\displaystyle\tan\left({ \sqrt{y}}\right)=\frac{x}{14}+C$

really?

Technically as you have integrated on both sides, both sides need an integration constant, but since they can then be combined on one side, yes what you have here is correct.

You could then solve for y if you really wanted to...
 
too lazy.. I leave it the way it is.😎
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
528
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K