MHB Solving Geometry Problem in Sediment Bed Research

  • Thread starter Thread starter Twan
  • Start date Start date
  • Tags Tags
    Geometry
AI Thread Summary
The discussion revolves around a master's project focused on measuring sediment bed changes under oscillating fluid flow using a pattern matching technique. The researcher employs a beamer and camera setup to analyze projected patterns on a sediment layer, aiming to reconstruct the sediment profile based on changes in dot coordinates. A challenge arises due to a small offset in calculated bed profiles caused by varying projection angles. The researcher seeks an analytical solution for the relationship between sediment height and the difference in projection positions, but struggles with the complexity of the equations involved. Clarification and more specific questions are requested to facilitate assistance from the forum community.
Twan
Messages
2
Reaction score
0
View attachment 8174View attachment 8175

Hi, this is my first post with a problem that I have during my Msc Project.

I will briefly discuss my project and the reason why I would like to solve this problem, if you do not want to read this part you can skip it.

I am doing experimental research on the scaled laboratory setup where I measure the changes in bottom profiles of a sediment layer under a oscillating fluid flow. Via a pattern matching technique I am able to reconstruct the bottom profile (morphodynamics) of the sediment bed.
The working principle is a beamer that projects a set of projections where white dots are being projected on top op the sediment layer ( trough the water surface ( so refraction will also be part of this problem )). The beamer is positioned under an angle and projects the pattern within my region of interest. Above this region there is a camera that makes pictures of the patterns projected by the beamer.
If the sediment profile in my region of interest changes in height, the projected image will gets distorted. The changes within the projected patterns are then used to reconstruct the ''real'' vertical change in the sediment layer.
- i have 15 pattern images ( within each pattern there are 200 white dots )
- first the 15 patterns are projected on the horizontal surface
- pictures of these patterns are taken and analysed ( i save the (x,y) coordinates of all the 200 dots for each image )
- adding a bit of sediment on the horizontal plate will result in some changes of the x coordinate of some dots
(only the x coordinate varies because the beamer is positioned in line with the x-axis)
- these changes in x coordinate * factor = vertical change.
The factor can be calculated via a calibration where a inclined plane is used, and patterns are projected. Knowing the slope of the plane it is possible to determine the factor.
Every thing is done while water is present.

While analyzing the data I found out that my calculated bed profiles have a small offset ( slope ). This is due to the fact that the projection angle varies throughout my region of interest. ---------------------------
The problem

Is there an analytical solution the the following problem:
I want to have h=h(x,H,deltax) where h is the height of my sediment layer
H is the water level (constant) and deltax is the difference between position of the projection without sediment & with sediment.
See the image to get an overview of the problem.

So far I have tried several things but I am not able to solve it by hand. (including dummie variables etc)
Maybe someone else can help me by addressing some steps/hints/...

Thanks in advance

Twan
 

Attachments

  • Question 2.jpeg
    Question 2.jpeg
    53.2 KB · Views: 128
  • Question 1.jpeg
    Question 1.jpeg
    75.9 KB · Views: 123
Mathematics news on Phys.org
1) I do not have enough equations to solve for the current number of unknowns.
2) Is there a better ( analytical ) formula for theta i.f.o. x.
 
Hi Twan, welcome to MHB!

To be honest, I'm too lazy too carefully read your post, or to try and understand your problem from the background text, or to try to read a picture that is sideways to begin with.
As no one else has tried to help you yet, I suspect that others may feel the same way.
Can you perhaps break it down a bit, clear if up a bit, or otherwise ask a question that is a bit more specific?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top