Solving Heat Transfer Equations for Rtot: Understanding Units and Formulas

  • Thread starter Thread starter stunner5000pt
  • Start date Start date
  • Tags Tags
    Heat Heat transfer
AI Thread Summary
The discussion focuses on calculating the total heat resistance (R_tot) of a room's walls using the formula R_tot = (18 - (-5)) / (400 + 2(80)), resulting in a value of 0.041 K/W. However, participants note that the units do not align correctly, as the calculation mixes the rate of heat transfer (in watts) with the R-value of the walls. It is suggested that the relevant equation should incorporate the total wall area of 35 m² to ensure accurate results. Additionally, the correct unit for the heat resistance should be expressed in m²K/W. Clarification on the appropriate formula and units is necessary for accurate calculations.
stunner5000pt
Messages
1,447
Reaction score
5
Homework Statement
Consider a room in a house that has composite walls with some heat resistance R(tot). The total cross sectional area of the walls in 35 m^2. During winter, the temp outside is -5 deg C. Inside there is an electric heater emitting heat at a rate of 400 W so the room temperature is constant at 18 deg C. The room is occupied by 2 people each emitting 80 W each. What is the heat resistance of the walls in W?
Relevant Equations
[tex] \frac{dQ}{dt} = \frac{T_{out} - T_{in}}{R_{tot}} [/tex]
I believe that just using the equation above should yield the following:

R_{tot} = \frac{18 -(-5)}{400 + 2(80)} = 0.041

but the units don't seem to match up... The units of the above answer are in K / W.

Is there a different formula i should be using?

Your help is appreciated!
 
Physics news on Phys.org
stunner5000pt said:
Homework Statement:: Consider a room in a house that has composite walls with some heat resistance R(tot). The total cross sectional area of the walls in 35 m^2. During winter, the temp outside is -5 deg C. Inside there is an electric heater emitting heat at a rate of 400 W so the room temperature is constant at 18 deg C. The room is occupied by 2 people each emitting 80 W each. What is the heat resistance of the walls in W?
Your relevant equation is missing the total area of the walls of the room.
Also, the question seems to be mixing rate of heat transfer (watts) and R-value of the composite walls.

Please, see:
https://www.engineeringtoolbox.com/overall-heat-transfer-coefficient-d_434.html

:cool:
 
Last edited:
Lnewqban said:
the question seems to be mixing rate of heat transfer (watts) and R-value of the composite walls.
Yes, it should ask for ##Km^2/W##.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top