Solving Integration Problem: \int_0^a x Sin^2\left(\frac{nx\pi}{a}\right) dx

  • Thread starter Thread starter dangsy
  • Start date Start date
  • Tags Tags
    Integration
Click For Summary
SUMMARY

The integration problem discussed involves the evaluation of the integral \(\int_0^a x \sin^2\left(\frac{nx\pi}{a}\right) dx\). The solution approach utilizes integration by parts and the trigonometric identity \(\cos(2x) = 1 - 2\sin^2(x)\) to simplify the integrand. The final result is confirmed to be \(\frac{a}{2}\), demonstrating the importance of correctly applying integration techniques and identities in solving definite integrals.

PREREQUISITES
  • Understanding of integration techniques, specifically integration by parts.
  • Familiarity with trigonometric identities, particularly \(\cos(2x)\) and \(\sin^2(x)\).
  • Knowledge of definite integrals and their evaluation.
  • Basic calculus concepts, including differentiation and integration of functions.
NEXT STEPS
  • Study the application of integration by parts in various contexts.
  • Learn more about trigonometric identities and their use in calculus.
  • Explore advanced integration techniques, including substitution and partial fractions.
  • Practice solving definite integrals involving trigonometric functions.
USEFUL FOR

Students studying calculus, mathematics educators, and anyone looking to improve their skills in solving definite integrals involving trigonometric functions.

dangsy
Messages
14
Reaction score
0

Homework Statement



\int_0^a x Sin^2\left(\frac{nx\pi}{a}\right) dx

The Attempt at a Solution


\int_a^b f(x) g'(x)\, dx = \left[ f(x) g(x) \right]_{a}^{b} - \int_a^b f'(x) g(x)\, dx\

\left| x \left[ \frac{nx\pi}{2a}-\frac{Sin\left(2nx\pi\right)}{4a}\right] \right|^{a}_{0}- \int_0^a \frac{nx\pi}{2a}-\frac{Sin\left(2nx\pi\right)}{4a}

a \left[ \frac{n\pi}{2}-\frac{Sin\left(2n\pi\right)}{4}\right] - \int_0^a \frac{nx\pi}{2a}-\frac{Sin\left(2nx\pi\right)}{4a}

a \left[ \frac{n\pi}{2}-\frac{Sin\left(2n\pi\right)}{4}\right] - \frac{1}{2a} \int_0^a nx\pi-\frac{Sin\left(2nx\pi\right)}{2}

a \left[ \frac{n\pi}{2}-\frac{Sin\left(2n\pi\right)}{4}\right] - \frac{1}{2a}\left[ \int_0^a nx\pi-\int_0^a\frac{Sin\left(2nx\pi\right)}{2}\right]

a \left[ \frac{n\pi}{2}-\frac{Sin\left(2n\pi\right)}{4}\right] - \frac{1}{2a}\left[ n\pi\int_0^a x- \frac{1}{2}\int_0^a Sin\left(2nx\pi\right)\right]


a \left[ \frac{n\pi}{2}-\frac{Sin\left(2n\pi\right)}{4}\right] - \frac{1}{2a}\left[ n\pi \left | x\right |^{a}_{0} - \frac{1}{2} \left| Sin\left(2nx\pi\right)\right|^{a}_{0}\right]

a \left[ \frac{n\pi}{2}-\frac{Sin\left(2n\pi\right)}{4}\right] - \frac{1}{2a}\left[ n\pi a - \frac{1}{2} Sin\left(2na\pi\right)\right]

a \left[ \frac{n\pi}{2}-\frac{Sin\left(2n\pi\right)}{4}\right] - \left[ \frac{n\pi}{2} - \frac{1}{4a} Sin\left(2na\pi\right)\right]

Sin\left(2n\pi\right) = 0
Sin\left(2na\pi\right) = 0

a \left[ \frac{n\pi}{2}\right] - \left[ \frac{n\pi}{2} \right]

I'm kinda stuck here...

I know the answer is \frac{a}{2}

but I'm not sure how to get to it...maybe an integration mistake?
 
Physics news on Phys.org
first of all you are claiming that

\frac{d}{dx}\left[ \frac{nx\pi}{2a}-\frac{Sin\left(2nx\pi\right)}{4a}\right]=Sin^2\left(\frac{nx\pi}{a}\right) which is not true
 
You need to use the identity \cos(2x) = 1 - 2\sin^2(x) to turn \sin^2(x) into a sum of things you know how to integrate (either directly or using integration by parts).
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K