MHB Solving Linear Transformations w/ Bases of Vector Spaces

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here is the question:

george said:
Let $\{e_1, e_2, e_3\}$ be a basis for the vector space $V$ and $T: V \rightarrow V$ a linear transformation.

(a)
Show that if $f_1=e_1+e_2+e_3$, $f_2=e_1+e_2$, $f_3=e_1$ then $\{f_1,f_2,f_3\}$ is also a basis for $V$

(b)
Find the matrix $B$ of the $T$ with respect to the basis $\{e_1,e_2,e_3\}$ given that its matrix with respect to $\{f_1,f_2,f_3\}$ is
\[A = \begin{pmatrix}0 & 0 & 1\\ 0 & 1 & 1 \\ 1 & 1 & 1\end{pmatrix}\]

Here is a link to the question:

Let {e1, e2, e3} be a basis for the vector space V and T: V -> V a linear transformation.? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello george,

Since $\{e_1,e_2,e_3\}$ forms a basis for $V$, we see that they're linearly independent, i.e. for scalars $c_1,c_2,c_3\in\mathbb{R}$ (or any field of interest) $c_1e_1+c_2e_2+c_3e_3 = 0 \iff c_1=c_2=c_3=0$. Now, let $d_1,d_2,d_3\in\mathbb{R}$. We now consider the equation $d_1f_1+d_2f_2+d_3f_3 = 0$. Since $f_1=e_1+e_2+e_3$, $f_2=e_1+e_2$ and $f_3=e_1$, we see that
\[\begin{aligned} d_1f_1+d_2f_2+d_3f_3 = 0 &\implies d_1(e_1+e_2+e_3) + d_2(e_1+e_2) + d_3(e_3) = 0 \\ & \implies (d_1+d_2+d_3)e_1 + (d_1+d_2)e_2 + d_1e_3 = 0\end{aligned}\]
Since $\{e_1,e_2,e_3\}$ was a basis, we must now have that
\[\left\{\begin{aligned} d_1 + d_2 + d_3 &= 0\\ d_1 + d_2 &= 0 \\ d_1 &= 0\end{aligned}\right.\]
which clearly has the solution $d_1=d_2=d_3=0$. Therefore, $d_1f_1 + d_2f_2 + d_3f_3 = 0 \iff d_1=d_2=d_3=0$ and hence $\{f_1,f_2,f_3\}$ is a linearly independent set in $V$. Furthermore, $\mathrm{Span}\{f_1,f_2,f_3\} = \mathrm{Span}\{e_1,e_2,e_3\} = V$; hence, $\{f_1,f_2,f_3\}$ is also a basis for $V$.Next, we're told that in terms of the basis $\{f_1,f_2,f_3\}$, the linear transformation $T:V\rightarrow V$ is represented by the matrix
\[A = \begin{pmatrix}T(f_1) & T(f_2) & T(f_3)\end{pmatrix} = \begin{pmatrix}0 & 0 & 1\\ 0 & 1 & 1 \\ 1 & 1 & 1\end{pmatrix}\]
Since $f_1 = e_1 + e_2 + e_3$, $f_2 = e_1 + e_2$, and $f_3 = e_1$, we see that
\[T(f_1) = T(e_1) + T(e_2) + T(e_3),\quad T(f_2) = T(e_1) + T(e_2),\quad\text{and}\quad T(f_3) = T(e_1).\]
Comparing the columns of these two matrices, we have the system of equations
\[\left\{\begin{aligned}T(e_1) + T(e_2) + T(e_3) &= { \begin{pmatrix}0\\ 0 \\ 1\end{pmatrix}} \\ T(e_1) + T(e_2) &= {\begin{pmatrix} 0 \\ 1 \\ 1\end{pmatrix}} \\ T(e_1) &= {\begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix} }\end{aligned}\right.\]
Solving this system yields that
\[T(e_1) = \begin{pmatrix}1\\ 1\\ 1\end{pmatrix},\quad T(e_2) = \begin{pmatrix}-1\\ 0 \\ 0\end{pmatrix},\quad\text{and}\quad T(e_3) = \begin{pmatrix}0 \\ -1 \\ 0\end{pmatrix}\]
Therefore, in terms of the basis $\{e_1,e_2,e_3\}$, the linear transformation $T:V\rightarrow V$ is represented by the matrix
\[B = \begin{pmatrix} T(e_1) & T(e_2) & T(e_3)\end{pmatrix} = \begin{pmatrix}1 & -1 & 0\\ 1 & 0 & -1\\ 1 & 0 & 0\end{pmatrix}\]I hope this makes sense!
 
Chris L T521 said:
Here is the question:
Here is a link to the question:

Let {e1, e2, e3} be a basis for the vector space V and T: V -> V a linear transformation.? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
An alternativ way for a) is to check that that $$det \neq 0$$ but the way Chris L T521 is probably the best!
2rh9oat.jpg

Basicly what I did Was put $$f_1,f_2,f_3$$ as a columne to a matrice and Then calculate the determinant! (You can se in picture which is $$f_1,f_2,f_3$$

Regards,
$$|\pi\rangle$$
 
Alternative 3:

Because the set $\{f_1,f_2,f_3\}$ has 3 elements it suffices to show that this set spans $V$ (since $V$ has dimension 3 because of the size of the given basis).

We have:

$e_1 = f_3$
$e_2 = f_2 - f_3$
$e_3 = f_1 - f_2$

so $c_1e_1 + c_2e_2 + c_3e_3 = c_1(f_3) + c_2(f_2 - f_3) + c_3(f_1 - f_2)$

$= c_3f_1 + (c_2 - c_3)f_2 + (c_1 - c_2)f_3 \in \text{span}(\{f_1,f_2,f_3\})$.

***********
Before tackling the second question, it bears looking into what the change-of-basis matrix $P$ is:

$P = \begin{bmatrix}0&0&1\\0&1&-1\\1&-1&0 \end{bmatrix}$

If we call our bases B (for the $e$'s) and C (for the $f$'s), then:

$P([\mathbf{v}]_B) = [\mathbf{v}]_C$

The problem gives us $P^{-1}$ straight off the bat, it is:

$P^{-1} = \begin{bmatrix}1&1&1\\1&1&0\\1&0&0 \end{bmatrix}$

So the matrix we desire is:

$A' = P^{-1}AP$, which sends:

$[\mathbf{v}]_B \to [\mathbf{v}]_C \to [T(\mathbf{v})]_C \to [T(\mathbf{v})]_B$

Computing, we have:

$A' = P^{-1}AP = \begin{bmatrix}1&1&1\\1&1&0\\1&0&0 \end{bmatrix} \begin{bmatrix}0&0&1\\0&1&1\\1&1&1 \end{bmatrix} \begin{bmatrix}0&0&1\\0&1&-1\\1&-1&0 \end{bmatrix}$

$ = \begin{bmatrix}1&2&3\\0&1&2\\0&0&1 \end{bmatrix} \begin{bmatrix}0&0&1\\0&1&-1\\1&-1&0 \end{bmatrix}$

$ = \begin{bmatrix}3&-1&-1\\2&-1&-1\\1&-1&0 \end{bmatrix}$

Huh. I get a different matrix. One of us must be wrong, who is it?

Chris L T521 writes:

$T(f_3) = T(e_1) = \begin{pmatrix}1\\1\\1 \end{pmatrix}$

This is misleading...coordinates don't tell us which vector we have UNTIL we choose a basis. What we actually have is:

$T(e_1) = T(f_3) = f_1 + f_2 + f_3 = (e_1 + e_2 + e_3) + (e_1 + e_2) + e_3 = 3e_1 + 2e_2 + e_3$.

We should expect that in the B-basis, $A'$ should map (1,0,0) to (3,2,1). I think I am correct.

EDIT:

Chris L T521, the mistake you made is that your images for $T(e_j)$ are still in the C-basis, you need to convert these back to the B-basis.
 
Last edited:
Deveno said:
Alternative 3:

Because the set $\{f_1,f_2,f_3\}$ has 3 elements it suffices to show that this set spans $V$ (since $V$ has dimension 3 because of the size of the given basis).

We have:

$e_1 = f_3$
$e_2 = f_2 - f_3$
$e_3 = f_1 - f_2$

so $c_1e_1 + c_2e_2 + c_3e_3 = c_1(f_3) + c_2(f_2 - f_3) + c_3(f_1 - f_2)$

$= c_3f_1 + (c_2 - c_3)f_2 + (c_1 - c_2)f_3 \in \text{span}(\{f_1,f_2,f_3\})$.

***********
Before tackling the second question, it bears looking into what the change-of-basis matrix $P$ is:

$P = \begin{bmatrix}0&0&1\\0&1&-1\\1&-1&0 \end{bmatrix}$

If we call our bases B (for the $e$'s) and C (for the $f$'s), then:

$P([\mathbf{v}]_B) = [\mathbf{v}]_C$

The problem gives us $P^{-1}$ straight off the bat, it is:

$P^{-1} = \begin{bmatrix}1&1&1\\1&1&0\\1&0&0 \end{bmatrix}$

So the matrix we desire is:

$A' = P^{-1}AP$, which sends:

$[\mathbf{v}]_B \to [\mathbf{v}]_C \to [T(\mathbf{v})]_C \to [T(\mathbf{v})]_B$

Computing, we have:

$A' = P^{-1}AP = \begin{bmatrix}1&1&1\\1&1&0\\1&0&0 \end{bmatrix} \begin{bmatrix}0&0&1\\0&1&1\\1&1&1 \end{bmatrix} \begin{bmatrix}0&0&1\\0&1&-1\\1&-1&0 \end{bmatrix}$

$ = \begin{bmatrix}1&2&3\\0&1&2\\0&0&1 \end{bmatrix} \begin{bmatrix}0&0&1\\0&1&-1\\1&-1&0 \end{bmatrix}$

$ = \begin{bmatrix}3&-1&-1\\2&-1&-1\\1&-1&0 \end{bmatrix}$

Huh. I get a different matrix. One of us must be wrong, who is it?

Chris L T521 writes:

$T(f_3) = T(e_1) = \begin{pmatrix}1\\1\\1 \end{pmatrix}$

This is misleading...coordinates don't tell us which vector we have UNTIL we choose a basis. What we actually have is:

$T(e_1) = T(f_3) = f_1 + f_2 + f_3 = (e_1 + e_2 + e_3) + (e_1 + e_2) + e_3 = 3e_1 + 2e_2 + e_3$.

We should expect that in the B-basis, $A'$ should map (1,0,0) to (3,2,1). I think I am correct.

EDIT:

Chris L T521, the mistake you made is that your images for $T(e_j)$ are still in the C-basis, you need to convert these back to the B-basis.

Ah, after posting my answer, I had a slight feeling something was off with the matrix I came up with. Thanks a bunch for clarifying that!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top