Solving Linear Transformations w/ Bases of Vector Spaces

Click For Summary

Discussion Overview

The discussion revolves around solving problems related to linear transformations and bases of vector spaces. Participants explore the properties of two different bases, $\{e_1, e_2, e_3\}$ and $\{f_1, f_2, f_3\}$, and how to find the matrix representation of a linear transformation $T$ with respect to these bases. The conversation includes theoretical aspects, mathematical reasoning, and alternative methods for proving claims.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant demonstrates that $\{f_1, f_2, f_3\}$ is a basis for $V$ by showing it is linearly independent and spans $V$.
  • Another participant suggests an alternative method to verify that $\{f_1, f_2, f_3\}$ is a basis by calculating the determinant of a matrix formed by these vectors.
  • A different approach is presented, emphasizing that since $\{f_1, f_2, f_3\}$ has three elements, it suffices to show that it spans $V$ due to the dimension of $V$ being three.
  • Participants discuss the change-of-basis matrix $P$ and its inverse, and how to compute the matrix representation of $T$ in the new basis.
  • There is a disagreement regarding the correct matrix representation of the transformation $T$ in the basis $\{e_1, e_2, e_3\}$, with one participant asserting their result differs from another's, leading to a discussion about potential errors in calculations.
  • One participant points out that coordinates do not determine the vector until a basis is chosen, suggesting a need to convert images back to the original basis.

Areas of Agreement / Disagreement

Participants generally agree on the methods to show that $\{f_1, f_2, f_3\}$ is a basis, but there is disagreement regarding the correct matrix representation of the linear transformation $T$. Multiple competing views remain about the calculations involved.

Contextual Notes

Some participants express uncertainty about the correctness of their calculations and the implications of changing bases, indicating that there may be unresolved mathematical steps or assumptions in their reasoning.

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here is the question:

george said:
Let $\{e_1, e_2, e_3\}$ be a basis for the vector space $V$ and $T: V \rightarrow V$ a linear transformation.

(a)
Show that if $f_1=e_1+e_2+e_3$, $f_2=e_1+e_2$, $f_3=e_1$ then $\{f_1,f_2,f_3\}$ is also a basis for $V$

(b)
Find the matrix $B$ of the $T$ with respect to the basis $\{e_1,e_2,e_3\}$ given that its matrix with respect to $\{f_1,f_2,f_3\}$ is
\[A = \begin{pmatrix}0 & 0 & 1\\ 0 & 1 & 1 \\ 1 & 1 & 1\end{pmatrix}\]

Here is a link to the question:

Let {e1, e2, e3} be a basis for the vector space V and T: V -> V a linear transformation.? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Physics news on Phys.org
Hello george,

Since $\{e_1,e_2,e_3\}$ forms a basis for $V$, we see that they're linearly independent, i.e. for scalars $c_1,c_2,c_3\in\mathbb{R}$ (or any field of interest) $c_1e_1+c_2e_2+c_3e_3 = 0 \iff c_1=c_2=c_3=0$. Now, let $d_1,d_2,d_3\in\mathbb{R}$. We now consider the equation $d_1f_1+d_2f_2+d_3f_3 = 0$. Since $f_1=e_1+e_2+e_3$, $f_2=e_1+e_2$ and $f_3=e_1$, we see that
\[\begin{aligned} d_1f_1+d_2f_2+d_3f_3 = 0 &\implies d_1(e_1+e_2+e_3) + d_2(e_1+e_2) + d_3(e_3) = 0 \\ & \implies (d_1+d_2+d_3)e_1 + (d_1+d_2)e_2 + d_1e_3 = 0\end{aligned}\]
Since $\{e_1,e_2,e_3\}$ was a basis, we must now have that
\[\left\{\begin{aligned} d_1 + d_2 + d_3 &= 0\\ d_1 + d_2 &= 0 \\ d_1 &= 0\end{aligned}\right.\]
which clearly has the solution $d_1=d_2=d_3=0$. Therefore, $d_1f_1 + d_2f_2 + d_3f_3 = 0 \iff d_1=d_2=d_3=0$ and hence $\{f_1,f_2,f_3\}$ is a linearly independent set in $V$. Furthermore, $\mathrm{Span}\{f_1,f_2,f_3\} = \mathrm{Span}\{e_1,e_2,e_3\} = V$; hence, $\{f_1,f_2,f_3\}$ is also a basis for $V$.Next, we're told that in terms of the basis $\{f_1,f_2,f_3\}$, the linear transformation $T:V\rightarrow V$ is represented by the matrix
\[A = \begin{pmatrix}T(f_1) & T(f_2) & T(f_3)\end{pmatrix} = \begin{pmatrix}0 & 0 & 1\\ 0 & 1 & 1 \\ 1 & 1 & 1\end{pmatrix}\]
Since $f_1 = e_1 + e_2 + e_3$, $f_2 = e_1 + e_2$, and $f_3 = e_1$, we see that
\[T(f_1) = T(e_1) + T(e_2) + T(e_3),\quad T(f_2) = T(e_1) + T(e_2),\quad\text{and}\quad T(f_3) = T(e_1).\]
Comparing the columns of these two matrices, we have the system of equations
\[\left\{\begin{aligned}T(e_1) + T(e_2) + T(e_3) &= { \begin{pmatrix}0\\ 0 \\ 1\end{pmatrix}} \\ T(e_1) + T(e_2) &= {\begin{pmatrix} 0 \\ 1 \\ 1\end{pmatrix}} \\ T(e_1) &= {\begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix} }\end{aligned}\right.\]
Solving this system yields that
\[T(e_1) = \begin{pmatrix}1\\ 1\\ 1\end{pmatrix},\quad T(e_2) = \begin{pmatrix}-1\\ 0 \\ 0\end{pmatrix},\quad\text{and}\quad T(e_3) = \begin{pmatrix}0 \\ -1 \\ 0\end{pmatrix}\]
Therefore, in terms of the basis $\{e_1,e_2,e_3\}$, the linear transformation $T:V\rightarrow V$ is represented by the matrix
\[B = \begin{pmatrix} T(e_1) & T(e_2) & T(e_3)\end{pmatrix} = \begin{pmatrix}1 & -1 & 0\\ 1 & 0 & -1\\ 1 & 0 & 0\end{pmatrix}\]I hope this makes sense!
 
Chris L T521 said:
Here is the question:
Here is a link to the question:

Let {e1, e2, e3} be a basis for the vector space V and T: V -> V a linear transformation.? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
An alternativ way for a) is to check that that $$det \neq 0$$ but the way Chris L T521 is probably the best!
2rh9oat.jpg

basically what I did Was put $$f_1,f_2,f_3$$ as a columne to a matrice and Then calculate the determinant! (You can se in picture which is $$f_1,f_2,f_3$$

Regards,
$$|\pi\rangle$$
 
Alternative 3:

Because the set $\{f_1,f_2,f_3\}$ has 3 elements it suffices to show that this set spans $V$ (since $V$ has dimension 3 because of the size of the given basis).

We have:

$e_1 = f_3$
$e_2 = f_2 - f_3$
$e_3 = f_1 - f_2$

so $c_1e_1 + c_2e_2 + c_3e_3 = c_1(f_3) + c_2(f_2 - f_3) + c_3(f_1 - f_2)$

$= c_3f_1 + (c_2 - c_3)f_2 + (c_1 - c_2)f_3 \in \text{span}(\{f_1,f_2,f_3\})$.

***********
Before tackling the second question, it bears looking into what the change-of-basis matrix $P$ is:

$P = \begin{bmatrix}0&0&1\\0&1&-1\\1&-1&0 \end{bmatrix}$

If we call our bases B (for the $e$'s) and C (for the $f$'s), then:

$P([\mathbf{v}]_B) = [\mathbf{v}]_C$

The problem gives us $P^{-1}$ straight off the bat, it is:

$P^{-1} = \begin{bmatrix}1&1&1\\1&1&0\\1&0&0 \end{bmatrix}$

So the matrix we desire is:

$A' = P^{-1}AP$, which sends:

$[\mathbf{v}]_B \to [\mathbf{v}]_C \to [T(\mathbf{v})]_C \to [T(\mathbf{v})]_B$

Computing, we have:

$A' = P^{-1}AP = \begin{bmatrix}1&1&1\\1&1&0\\1&0&0 \end{bmatrix} \begin{bmatrix}0&0&1\\0&1&1\\1&1&1 \end{bmatrix} \begin{bmatrix}0&0&1\\0&1&-1\\1&-1&0 \end{bmatrix}$

$ = \begin{bmatrix}1&2&3\\0&1&2\\0&0&1 \end{bmatrix} \begin{bmatrix}0&0&1\\0&1&-1\\1&-1&0 \end{bmatrix}$

$ = \begin{bmatrix}3&-1&-1\\2&-1&-1\\1&-1&0 \end{bmatrix}$

Huh. I get a different matrix. One of us must be wrong, who is it?

Chris L T521 writes:

$T(f_3) = T(e_1) = \begin{pmatrix}1\\1\\1 \end{pmatrix}$

This is misleading...coordinates don't tell us which vector we have UNTIL we choose a basis. What we actually have is:

$T(e_1) = T(f_3) = f_1 + f_2 + f_3 = (e_1 + e_2 + e_3) + (e_1 + e_2) + e_3 = 3e_1 + 2e_2 + e_3$.

We should expect that in the B-basis, $A'$ should map (1,0,0) to (3,2,1). I think I am correct.

EDIT:

Chris L T521, the mistake you made is that your images for $T(e_j)$ are still in the C-basis, you need to convert these back to the B-basis.
 
Last edited:
Deveno said:
Alternative 3:

Because the set $\{f_1,f_2,f_3\}$ has 3 elements it suffices to show that this set spans $V$ (since $V$ has dimension 3 because of the size of the given basis).

We have:

$e_1 = f_3$
$e_2 = f_2 - f_3$
$e_3 = f_1 - f_2$

so $c_1e_1 + c_2e_2 + c_3e_3 = c_1(f_3) + c_2(f_2 - f_3) + c_3(f_1 - f_2)$

$= c_3f_1 + (c_2 - c_3)f_2 + (c_1 - c_2)f_3 \in \text{span}(\{f_1,f_2,f_3\})$.

***********
Before tackling the second question, it bears looking into what the change-of-basis matrix $P$ is:

$P = \begin{bmatrix}0&0&1\\0&1&-1\\1&-1&0 \end{bmatrix}$

If we call our bases B (for the $e$'s) and C (for the $f$'s), then:

$P([\mathbf{v}]_B) = [\mathbf{v}]_C$

The problem gives us $P^{-1}$ straight off the bat, it is:

$P^{-1} = \begin{bmatrix}1&1&1\\1&1&0\\1&0&0 \end{bmatrix}$

So the matrix we desire is:

$A' = P^{-1}AP$, which sends:

$[\mathbf{v}]_B \to [\mathbf{v}]_C \to [T(\mathbf{v})]_C \to [T(\mathbf{v})]_B$

Computing, we have:

$A' = P^{-1}AP = \begin{bmatrix}1&1&1\\1&1&0\\1&0&0 \end{bmatrix} \begin{bmatrix}0&0&1\\0&1&1\\1&1&1 \end{bmatrix} \begin{bmatrix}0&0&1\\0&1&-1\\1&-1&0 \end{bmatrix}$

$ = \begin{bmatrix}1&2&3\\0&1&2\\0&0&1 \end{bmatrix} \begin{bmatrix}0&0&1\\0&1&-1\\1&-1&0 \end{bmatrix}$

$ = \begin{bmatrix}3&-1&-1\\2&-1&-1\\1&-1&0 \end{bmatrix}$

Huh. I get a different matrix. One of us must be wrong, who is it?

Chris L T521 writes:

$T(f_3) = T(e_1) = \begin{pmatrix}1\\1\\1 \end{pmatrix}$

This is misleading...coordinates don't tell us which vector we have UNTIL we choose a basis. What we actually have is:

$T(e_1) = T(f_3) = f_1 + f_2 + f_3 = (e_1 + e_2 + e_3) + (e_1 + e_2) + e_3 = 3e_1 + 2e_2 + e_3$.

We should expect that in the B-basis, $A'$ should map (1,0,0) to (3,2,1). I think I am correct.

EDIT:

Chris L T521, the mistake you made is that your images for $T(e_j)$ are still in the C-basis, you need to convert these back to the B-basis.

Ah, after posting my answer, I had a slight feeling something was off with the matrix I came up with. Thanks a bunch for clarifying that!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K