Solving Linear Transformations w/ Bases of Vector Spaces

Click For Summary
SUMMARY

The discussion focuses on solving linear transformations with respect to different bases in vector spaces. It establishes that the set $\{f_1, f_2, f_3\}$, defined as $f_1 = e_1 + e_2 + e_3$, $f_2 = e_1 + e_2$, and $f_3 = e_1$, forms a basis for the vector space $V$ if $\{e_1, e_2, e_3\}$ is a basis. The transformation matrix $B$ corresponding to the linear transformation $T$ with respect to the basis $\{e_1, e_2, e_3\}$ is derived as $B = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}$, after solving a system of equations based on the transformation matrix $A$ given in the problem.

PREREQUISITES
  • Understanding of linear transformations in vector spaces.
  • Familiarity with the concept of basis and linear independence.
  • Knowledge of matrix representation of linear transformations.
  • Ability to perform operations with matrices, including multiplication and finding determinants.
NEXT STEPS
  • Study the properties of linear transformations and their matrix representations.
  • Learn how to compute change-of-basis matrices and their inverses.
  • Explore the implications of linear independence and spanning sets in vector spaces.
  • Practice solving systems of equations derived from matrix representations of transformations.
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, vector spaces, and transformations. This discussion is beneficial for anyone looking to deepen their understanding of basis transformations and matrix operations in linear algebra.

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here is the question:

george said:
Let $\{e_1, e_2, e_3\}$ be a basis for the vector space $V$ and $T: V \rightarrow V$ a linear transformation.

(a)
Show that if $f_1=e_1+e_2+e_3$, $f_2=e_1+e_2$, $f_3=e_1$ then $\{f_1,f_2,f_3\}$ is also a basis for $V$

(b)
Find the matrix $B$ of the $T$ with respect to the basis $\{e_1,e_2,e_3\}$ given that its matrix with respect to $\{f_1,f_2,f_3\}$ is
\[A = \begin{pmatrix}0 & 0 & 1\\ 0 & 1 & 1 \\ 1 & 1 & 1\end{pmatrix}\]

Here is a link to the question:

Let {e1, e2, e3} be a basis for the vector space V and T: V -> V a linear transformation.? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Physics news on Phys.org
Hello george,

Since $\{e_1,e_2,e_3\}$ forms a basis for $V$, we see that they're linearly independent, i.e. for scalars $c_1,c_2,c_3\in\mathbb{R}$ (or any field of interest) $c_1e_1+c_2e_2+c_3e_3 = 0 \iff c_1=c_2=c_3=0$. Now, let $d_1,d_2,d_3\in\mathbb{R}$. We now consider the equation $d_1f_1+d_2f_2+d_3f_3 = 0$. Since $f_1=e_1+e_2+e_3$, $f_2=e_1+e_2$ and $f_3=e_1$, we see that
\[\begin{aligned} d_1f_1+d_2f_2+d_3f_3 = 0 &\implies d_1(e_1+e_2+e_3) + d_2(e_1+e_2) + d_3(e_3) = 0 \\ & \implies (d_1+d_2+d_3)e_1 + (d_1+d_2)e_2 + d_1e_3 = 0\end{aligned}\]
Since $\{e_1,e_2,e_3\}$ was a basis, we must now have that
\[\left\{\begin{aligned} d_1 + d_2 + d_3 &= 0\\ d_1 + d_2 &= 0 \\ d_1 &= 0\end{aligned}\right.\]
which clearly has the solution $d_1=d_2=d_3=0$. Therefore, $d_1f_1 + d_2f_2 + d_3f_3 = 0 \iff d_1=d_2=d_3=0$ and hence $\{f_1,f_2,f_3\}$ is a linearly independent set in $V$. Furthermore, $\mathrm{Span}\{f_1,f_2,f_3\} = \mathrm{Span}\{e_1,e_2,e_3\} = V$; hence, $\{f_1,f_2,f_3\}$ is also a basis for $V$.Next, we're told that in terms of the basis $\{f_1,f_2,f_3\}$, the linear transformation $T:V\rightarrow V$ is represented by the matrix
\[A = \begin{pmatrix}T(f_1) & T(f_2) & T(f_3)\end{pmatrix} = \begin{pmatrix}0 & 0 & 1\\ 0 & 1 & 1 \\ 1 & 1 & 1\end{pmatrix}\]
Since $f_1 = e_1 + e_2 + e_3$, $f_2 = e_1 + e_2$, and $f_3 = e_1$, we see that
\[T(f_1) = T(e_1) + T(e_2) + T(e_3),\quad T(f_2) = T(e_1) + T(e_2),\quad\text{and}\quad T(f_3) = T(e_1).\]
Comparing the columns of these two matrices, we have the system of equations
\[\left\{\begin{aligned}T(e_1) + T(e_2) + T(e_3) &= { \begin{pmatrix}0\\ 0 \\ 1\end{pmatrix}} \\ T(e_1) + T(e_2) &= {\begin{pmatrix} 0 \\ 1 \\ 1\end{pmatrix}} \\ T(e_1) &= {\begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix} }\end{aligned}\right.\]
Solving this system yields that
\[T(e_1) = \begin{pmatrix}1\\ 1\\ 1\end{pmatrix},\quad T(e_2) = \begin{pmatrix}-1\\ 0 \\ 0\end{pmatrix},\quad\text{and}\quad T(e_3) = \begin{pmatrix}0 \\ -1 \\ 0\end{pmatrix}\]
Therefore, in terms of the basis $\{e_1,e_2,e_3\}$, the linear transformation $T:V\rightarrow V$ is represented by the matrix
\[B = \begin{pmatrix} T(e_1) & T(e_2) & T(e_3)\end{pmatrix} = \begin{pmatrix}1 & -1 & 0\\ 1 & 0 & -1\\ 1 & 0 & 0\end{pmatrix}\]I hope this makes sense!
 
Chris L T521 said:
Here is the question:
Here is a link to the question:

Let {e1, e2, e3} be a basis for the vector space V and T: V -> V a linear transformation.? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
An alternativ way for a) is to check that that $$det \neq 0$$ but the way Chris L T521 is probably the best!
2rh9oat.jpg

basically what I did Was put $$f_1,f_2,f_3$$ as a columne to a matrice and Then calculate the determinant! (You can se in picture which is $$f_1,f_2,f_3$$

Regards,
$$|\pi\rangle$$
 
Alternative 3:

Because the set $\{f_1,f_2,f_3\}$ has 3 elements it suffices to show that this set spans $V$ (since $V$ has dimension 3 because of the size of the given basis).

We have:

$e_1 = f_3$
$e_2 = f_2 - f_3$
$e_3 = f_1 - f_2$

so $c_1e_1 + c_2e_2 + c_3e_3 = c_1(f_3) + c_2(f_2 - f_3) + c_3(f_1 - f_2)$

$= c_3f_1 + (c_2 - c_3)f_2 + (c_1 - c_2)f_3 \in \text{span}(\{f_1,f_2,f_3\})$.

***********
Before tackling the second question, it bears looking into what the change-of-basis matrix $P$ is:

$P = \begin{bmatrix}0&0&1\\0&1&-1\\1&-1&0 \end{bmatrix}$

If we call our bases B (for the $e$'s) and C (for the $f$'s), then:

$P([\mathbf{v}]_B) = [\mathbf{v}]_C$

The problem gives us $P^{-1}$ straight off the bat, it is:

$P^{-1} = \begin{bmatrix}1&1&1\\1&1&0\\1&0&0 \end{bmatrix}$

So the matrix we desire is:

$A' = P^{-1}AP$, which sends:

$[\mathbf{v}]_B \to [\mathbf{v}]_C \to [T(\mathbf{v})]_C \to [T(\mathbf{v})]_B$

Computing, we have:

$A' = P^{-1}AP = \begin{bmatrix}1&1&1\\1&1&0\\1&0&0 \end{bmatrix} \begin{bmatrix}0&0&1\\0&1&1\\1&1&1 \end{bmatrix} \begin{bmatrix}0&0&1\\0&1&-1\\1&-1&0 \end{bmatrix}$

$ = \begin{bmatrix}1&2&3\\0&1&2\\0&0&1 \end{bmatrix} \begin{bmatrix}0&0&1\\0&1&-1\\1&-1&0 \end{bmatrix}$

$ = \begin{bmatrix}3&-1&-1\\2&-1&-1\\1&-1&0 \end{bmatrix}$

Huh. I get a different matrix. One of us must be wrong, who is it?

Chris L T521 writes:

$T(f_3) = T(e_1) = \begin{pmatrix}1\\1\\1 \end{pmatrix}$

This is misleading...coordinates don't tell us which vector we have UNTIL we choose a basis. What we actually have is:

$T(e_1) = T(f_3) = f_1 + f_2 + f_3 = (e_1 + e_2 + e_3) + (e_1 + e_2) + e_3 = 3e_1 + 2e_2 + e_3$.

We should expect that in the B-basis, $A'$ should map (1,0,0) to (3,2,1). I think I am correct.

EDIT:

Chris L T521, the mistake you made is that your images for $T(e_j)$ are still in the C-basis, you need to convert these back to the B-basis.
 
Last edited:
Deveno said:
Alternative 3:

Because the set $\{f_1,f_2,f_3\}$ has 3 elements it suffices to show that this set spans $V$ (since $V$ has dimension 3 because of the size of the given basis).

We have:

$e_1 = f_3$
$e_2 = f_2 - f_3$
$e_3 = f_1 - f_2$

so $c_1e_1 + c_2e_2 + c_3e_3 = c_1(f_3) + c_2(f_2 - f_3) + c_3(f_1 - f_2)$

$= c_3f_1 + (c_2 - c_3)f_2 + (c_1 - c_2)f_3 \in \text{span}(\{f_1,f_2,f_3\})$.

***********
Before tackling the second question, it bears looking into what the change-of-basis matrix $P$ is:

$P = \begin{bmatrix}0&0&1\\0&1&-1\\1&-1&0 \end{bmatrix}$

If we call our bases B (for the $e$'s) and C (for the $f$'s), then:

$P([\mathbf{v}]_B) = [\mathbf{v}]_C$

The problem gives us $P^{-1}$ straight off the bat, it is:

$P^{-1} = \begin{bmatrix}1&1&1\\1&1&0\\1&0&0 \end{bmatrix}$

So the matrix we desire is:

$A' = P^{-1}AP$, which sends:

$[\mathbf{v}]_B \to [\mathbf{v}]_C \to [T(\mathbf{v})]_C \to [T(\mathbf{v})]_B$

Computing, we have:

$A' = P^{-1}AP = \begin{bmatrix}1&1&1\\1&1&0\\1&0&0 \end{bmatrix} \begin{bmatrix}0&0&1\\0&1&1\\1&1&1 \end{bmatrix} \begin{bmatrix}0&0&1\\0&1&-1\\1&-1&0 \end{bmatrix}$

$ = \begin{bmatrix}1&2&3\\0&1&2\\0&0&1 \end{bmatrix} \begin{bmatrix}0&0&1\\0&1&-1\\1&-1&0 \end{bmatrix}$

$ = \begin{bmatrix}3&-1&-1\\2&-1&-1\\1&-1&0 \end{bmatrix}$

Huh. I get a different matrix. One of us must be wrong, who is it?

Chris L T521 writes:

$T(f_3) = T(e_1) = \begin{pmatrix}1\\1\\1 \end{pmatrix}$

This is misleading...coordinates don't tell us which vector we have UNTIL we choose a basis. What we actually have is:

$T(e_1) = T(f_3) = f_1 + f_2 + f_3 = (e_1 + e_2 + e_3) + (e_1 + e_2) + e_3 = 3e_1 + 2e_2 + e_3$.

We should expect that in the B-basis, $A'$ should map (1,0,0) to (3,2,1). I think I am correct.

EDIT:

Chris L T521, the mistake you made is that your images for $T(e_j)$ are still in the C-basis, you need to convert these back to the B-basis.

Ah, after posting my answer, I had a slight feeling something was off with the matrix I came up with. Thanks a bunch for clarifying that!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K