MHB Solving Matrix A: Characteristic Equation and Eigenvectors

AI Thread Summary
The discussion focuses on finding the characteristic equation of a given 3x3 matrix A and its associated eigenvectors, with eigenvalues provided as -2, -2, and 1. The characteristic equation is derived from the determinant of the matrix A minus lambda times the identity matrix, set to zero. The determinant calculation involves expanding along the middle column, leading to a cubic polynomial. The final characteristic equation is expressed as (-2 - λ)(-2 - λ)(1 - λ) = 0. This process illustrates the relationship between eigenvalues, eigenvectors, and the characteristic polynomial of the matrix.
wefweff
Messages
2
Reaction score
0
good evening everyone!
Decided to solve the problems from last year's exams. I came across this example. Honestly, I didn't understand it. Who can help a young student? :)
Find characteristic equation of the matrix A in the form of the polynomial of degree of 3 (you do not need to find eigenvalues) and associated eigenvectors of the matrix. Eigenvalues of the matrix: -2, -2, 1.
А= 7 0 -3
-9 -2 3
18 0 -8
 
Mathematics news on Phys.org
$\lambda$ is an eigenvalue of matrix A if there exist some non-zero vector, v, such that $Av= \lambda v$. That is the same as $Av-\lambda v= 0$ or $(A- \lambda I)v= 0$. v= 0 is obviously a solution. In order that there be another solution $A- \lambda$ must not have an inverse. That requires that the determinant or $A- \lambda$ be 0.

Here $A= \begin{bmatrix}7 & 0 & -3 \\ -9 & -2 & 3 \\ 10 & 0 & -8 \end{bmatrix}$ so $A- \lambda I=\begin{bmatrix}7- \lambda & 0 & 3 \\ -9 & -2- \lambda & 3 \\ 18 & 0 & -8- \lambda \end{bmatrix}$.

The determinant is $\left|\begin{array}{ccc}7-\lambda & 0 & -3 \\ -9 & -2-\lambda & 3 \\ 18 & 0 & -8-\lambda \end{array}\right|$ so the characteristic equation is $|A- \lambda I|=\left|\begin{array}{ccc}7-\lambda & 0 & -3 \\ -9 & -2-\lambda & 3 \\ 18 & 0 & -8-\lambda \end{array}\right|= 0$. Since this is a 3 by 3 matrix, that will be a cubic equation.
 
Last edited:
To calculate $\left|\begin{array}{ccc} 7- \lambda & 0 & -3 \\ -9 & -2- \lambda & 3 \\ 18 & 0 & -8- \lambda \end{array}\right|$ expand on the middle column: $(-2- \lambda)\left|\begin{array}{cc} 7- \lambda & -3 \\ 18 & -8- \lambda \end{array}\right|= (-2- \lambda)((7- \lambda)(-8- \lambda)+ 54)= (-2- \lambda)(-56+ \lambda+ \lambda^2+ 54)= (-2- \lambda)(\lambda^2+ \lambda- 2)= (-2- \lambda)(-2- \lambda)(1- \lambda)$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top