MHB Solving Matrix A: Characteristic Equation and Eigenvectors

wefweff
Messages
2
Reaction score
0
good evening everyone!
Decided to solve the problems from last year's exams. I came across this example. Honestly, I didn't understand it. Who can help a young student? :)
Find characteristic equation of the matrix A in the form of the polynomial of degree of 3 (you do not need to find eigenvalues) and associated eigenvectors of the matrix. Eigenvalues of the matrix: -2, -2, 1.
А= 7 0 -3
-9 -2 3
18 0 -8
 
Mathematics news on Phys.org
$\lambda$ is an eigenvalue of matrix A if there exist some non-zero vector, v, such that $Av= \lambda v$. That is the same as $Av-\lambda v= 0$ or $(A- \lambda I)v= 0$. v= 0 is obviously a solution. In order that there be another solution $A- \lambda$ must not have an inverse. That requires that the determinant or $A- \lambda$ be 0.

Here $A= \begin{bmatrix}7 & 0 & -3 \\ -9 & -2 & 3 \\ 10 & 0 & -8 \end{bmatrix}$ so $A- \lambda I=\begin{bmatrix}7- \lambda & 0 & 3 \\ -9 & -2- \lambda & 3 \\ 18 & 0 & -8- \lambda \end{bmatrix}$.

The determinant is $\left|\begin{array}{ccc}7-\lambda & 0 & -3 \\ -9 & -2-\lambda & 3 \\ 18 & 0 & -8-\lambda \end{array}\right|$ so the characteristic equation is $|A- \lambda I|=\left|\begin{array}{ccc}7-\lambda & 0 & -3 \\ -9 & -2-\lambda & 3 \\ 18 & 0 & -8-\lambda \end{array}\right|= 0$. Since this is a 3 by 3 matrix, that will be a cubic equation.
 
Last edited:
To calculate $\left|\begin{array}{ccc} 7- \lambda & 0 & -3 \\ -9 & -2- \lambda & 3 \\ 18 & 0 & -8- \lambda \end{array}\right|$ expand on the middle column: $(-2- \lambda)\left|\begin{array}{cc} 7- \lambda & -3 \\ 18 & -8- \lambda \end{array}\right|= (-2- \lambda)((7- \lambda)(-8- \lambda)+ 54)= (-2- \lambda)(-56+ \lambda+ \lambda^2+ 54)= (-2- \lambda)(\lambda^2+ \lambda- 2)= (-2- \lambda)(-2- \lambda)(1- \lambda)$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top