MHB Solving Matrix A: Characteristic Equation and Eigenvectors

AI Thread Summary
The discussion focuses on finding the characteristic equation of a given 3x3 matrix A and its associated eigenvectors, with eigenvalues provided as -2, -2, and 1. The characteristic equation is derived from the determinant of the matrix A minus lambda times the identity matrix, set to zero. The determinant calculation involves expanding along the middle column, leading to a cubic polynomial. The final characteristic equation is expressed as (-2 - λ)(-2 - λ)(1 - λ) = 0. This process illustrates the relationship between eigenvalues, eigenvectors, and the characteristic polynomial of the matrix.
wefweff
Messages
2
Reaction score
0
good evening everyone!
Decided to solve the problems from last year's exams. I came across this example. Honestly, I didn't understand it. Who can help a young student? :)
Find characteristic equation of the matrix A in the form of the polynomial of degree of 3 (you do not need to find eigenvalues) and associated eigenvectors of the matrix. Eigenvalues of the matrix: -2, -2, 1.
А= 7 0 -3
-9 -2 3
18 0 -8
 
Mathematics news on Phys.org
$\lambda$ is an eigenvalue of matrix A if there exist some non-zero vector, v, such that $Av= \lambda v$. That is the same as $Av-\lambda v= 0$ or $(A- \lambda I)v= 0$. v= 0 is obviously a solution. In order that there be another solution $A- \lambda$ must not have an inverse. That requires that the determinant or $A- \lambda$ be 0.

Here $A= \begin{bmatrix}7 & 0 & -3 \\ -9 & -2 & 3 \\ 10 & 0 & -8 \end{bmatrix}$ so $A- \lambda I=\begin{bmatrix}7- \lambda & 0 & 3 \\ -9 & -2- \lambda & 3 \\ 18 & 0 & -8- \lambda \end{bmatrix}$.

The determinant is $\left|\begin{array}{ccc}7-\lambda & 0 & -3 \\ -9 & -2-\lambda & 3 \\ 18 & 0 & -8-\lambda \end{array}\right|$ so the characteristic equation is $|A- \lambda I|=\left|\begin{array}{ccc}7-\lambda & 0 & -3 \\ -9 & -2-\lambda & 3 \\ 18 & 0 & -8-\lambda \end{array}\right|= 0$. Since this is a 3 by 3 matrix, that will be a cubic equation.
 
Last edited:
To calculate $\left|\begin{array}{ccc} 7- \lambda & 0 & -3 \\ -9 & -2- \lambda & 3 \\ 18 & 0 & -8- \lambda \end{array}\right|$ expand on the middle column: $(-2- \lambda)\left|\begin{array}{cc} 7- \lambda & -3 \\ 18 & -8- \lambda \end{array}\right|= (-2- \lambda)((7- \lambda)(-8- \lambda)+ 54)= (-2- \lambda)(-56+ \lambda+ \lambda^2+ 54)= (-2- \lambda)(\lambda^2+ \lambda- 2)= (-2- \lambda)(-2- \lambda)(1- \lambda)$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top