Solving Modulus Equation: Find z=a+bi

  • Thread starter Thread starter BloodyFrozen
  • Start date Start date
  • Tags Tags
    Modulus
BloodyFrozen
Messages
353
Reaction score
1

Homework Statement


Find all ##z=a+bi## such that:
|z|=|z^{2}+1|


Homework Equations


The Attempt at a Solution


I expanded the components.
|z|=|z^{2}+1|
z^{2}=a^2-b^2+2abi
\sqrt{a^{2}+b^{2}}=\sqrt{(a^{2}-b^{2}+1)^{2}+(2ab)^{2}}
a^2+b^2=(a^{2}-b^{2}+1)^{2}+(2ab)^{2}
0=a^{4}+2a^{2}b^{2}+b^{4}+a^{2}-3b^{2}+1

I don't see what to do now...
 
Last edited:
Physics news on Phys.org
BloodyFrozen said:

Homework Statement


Find all ##z=a+bi## such that:
|z|=|z^{2}+1|


Homework Equations


The Attempt at a Solution


I expanded the components.
|z|=|z^{2}+1|
z^{2}=a^2+b^2+2abi
That should be -b^2, not +b^2.
 
jbunniii said:
That should be -b^2, not +b^2.

Right. Let me just go fix that.

Edit. Fixed
 
BloodyFrozen said:
Right. Let me just go fix that.

Edit. Fixed

Well, you fixed it in the first line where it appeared, but you still need to fix it everywhere else.
 
jbunniii said:
Well, you fixed it in the first line where it appeared, but you still need to fix it everywhere else.

I fixed then end before, I just forgot to change the middle parts.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top