Solving Series Convergence Problems: 1+ \frac{1}{3}-\frac{1}{2}+\frac{1}{5}+...

Click For Summary
SUMMARY

This discussion addresses the convergence of two specific series: the first series is 1 + 1/3 - 1/2 + 1/5 + 1/7 - 1/4 + 1/9 + 1/11 - 1/6 + ... which is shown to converge to (3/2) ln(2). The second series, 1 + 1/sqrt(2) - 1/sqrt(3) - 1/sqrt(4) + 1/sqrt(5) + 1/sqrt(6) - 1/sqrt(7) - 1/sqrt(8) + ..., converges based on the Leibniz criterion and can be expressed in terms of the Riemann Zeta Function and the Dirichlet Beta Function. The convergence of both series is established through mathematical properties and criteria.

PREREQUISITES
  • Understanding of series convergence, specifically conditionally convergent series.
  • Familiarity with the Riemann Zeta Function and Dirichlet Beta Function.
  • Knowledge of mathematical notation and LaTeX for expressing series and functions.
  • Basic principles of calculus, particularly limits and alternating series.
NEXT STEPS
  • Study the properties of conditionally convergent series in depth.
  • Learn about the Riemann Zeta Function and its applications in number theory.
  • Explore the Dirichlet Beta Function and its relationship with series convergence.
  • Practice using LaTeX for mathematical expressions to improve clarity in documentation.
USEFUL FOR

Mathematicians, students studying advanced calculus, and anyone interested in series convergence and mathematical analysis will benefit from this discussion.

Lisa91
Messages
29
Reaction score
0
I have a problem with convergence of two series:

1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+...

1+ \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{5}}+\frac{1}{ \sqrt{6}}-\frac{1}{\sqrt{7}}-\frac{1}{\sqrt{8}}+...

Could you give me please any hints so that I can solve them?
 
Last edited by a moderator:
Physics news on Phys.org
Lisa91 said:
I have a problem with convergence of two series:

1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+...

1+ \frac{1}{sqrt{2}}-\frac{1}{sqrt{3}}-\frac{1}{sqrt{4}}+\frac{1}{sqrt{5}}+\frac{1}{sqrt{6}}-\frac{1}{sqrt{7}}-\frac{1}{sqrt{8}}+...

Could you give me please any hints so that I can solve them?

The first series is a classical example of the properties of a conditionally convergent series. We start with the well known series... $\displaystyle 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} -... = \ln 2$ (1)

... from which we derive...

$\displaystyle \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} - \frac{1}{12} + \frac{1}{14} -... = \frac{\ln 2}{2}$ (2)

... that can be written as...

$\displaystyle 0 + \frac{1}{2} + 0 - \frac{1}{4} + 0 + \frac{1}{6}+ 0 - \frac{1}{8} + 0 + \frac{1}{10}+ 0 - \frac{1}{12} + 0 + \frac{1}{14} +... = \frac{\ln 2}{2}$ (3)

The we cas sum 'term by term' (1) and (3) obtaining...

$\displaystyle 1 - \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + ... = \frac{3}{2}\ \ln 2$ (4)

Kind regards

$\chi$ $\sigma$
 
May I write
1- \frac{1}{sqrt{2}}+\frac{1}{sqrt{3}}-\frac{1}{sqrt{4}}+\frac{1}{sqrt{5}}-\frac{1}{sqrt{6}}+\frac{1}{sqrt{7}}-... = (\lnn)^{\frac{1}{2}}
 
Lisa91 said:
I have a problem with convergence of two series:

1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+...

1+ \frac{1}{sqrt{2}}-\frac{1}{sqrt{3}}-\frac{1}{sqrt{4}}+\frac{1}{sqrt{5}}+\frac{1}{sqrt{6}}-\frac{1}{sqrt{7}}-\frac{1}{sqrt{8}}+...

Could you give me please any hints so that I can solve them?

The second series can be written in the form...

$\displaystyle \sum_{n=0}^{\infty} (-1)^{n} a_{n}\ ,\ a_{n}= \frac{1}{\sqrt{2 n + 1}} + \frac{1}{\sqrt{2 n + 2}}$ (1)

Now is $a_{n+1}<a_{n}$ and $\lim_{n \rightarrow \infty} a_{n}=0$ so that for the Leibnitz's criterion the series converges...

Kind regards

$\chi$ $\sigma$
 
Just a few $\displaystyle LaTeX$ suggestions:

To express the square root of a value, use the code \sqrt{x}, and for the nth root, use \sqrt[n]{x}.

Your natural log function on the right side is rendered incorrectly because there is no space between it and its argument. I suggest the code \ln(n).
 
Lisa91 said:
May I write
1- \frac{1}{sqrt{2}}+\frac{1}{sqrt{3}}-\frac{1}{sqrt{4}}+\frac{1}{sqrt{5}}-\frac{1}{sqrt{6}}+\frac{1}{sqrt{7}}-... = (\lnn)^{\frac{1}{2}}

Is...

$\displaystyle 1- \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{7}}-...= (1-\sqrt{2})\ \zeta(\frac{1}{2}) = .6048986434...$ (1)

Kind regards

$\chi$ $\sigma$
 
Because is...

$\displaystyle 1- \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{7}}-...= (1-\sqrt{2})\ \zeta(\frac{1}{2})$ (1)

... where $\zeta(*)$ is the Riemann Zeta Function, it is also...

$\displaystyle \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{4}}+\frac{1}{\sqrt{6}}-\frac{1}{\sqrt{8}}+\frac{1}{\sqrt{10}}-\frac{1}{\sqrt{12}}+\frac{1}{\sqrt{14}}-...= \frac{1-\sqrt{2}}{\sqrt{2}}\ \zeta(\frac{1}{2})$ (2)

Now remembering the definition of Diriclet Beta Function...

$\displaystyle \beta(s)= \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n + 1)^{s}}$ (3)

... we obtain...

$\displaystyle 1 + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{5}} + \frac{1}{\sqrt{6}} - ... = \frac{1-\sqrt{2}}{\sqrt{2}}\ \zeta(\frac{1}{2}) + \beta(\frac{1}{2})$ (4)

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K