MHB Solving Series Convergence Problems: 1+ \frac{1}{3}-\frac{1}{2}+\frac{1}{5}+...

Click For Summary
The discussion focuses on the convergence of two series, with the first series demonstrating properties of conditionally convergent series, leading to a conclusion that it sums to (3/2) ln(2). The second series is analyzed using the Leibniz criterion for alternating series, confirming its convergence. Further exploration reveals connections to the Riemann Zeta Function and Dirichlet Beta Function, providing specific expressions for the sums of both series. The participants share insights on how to approach these convergence problems mathematically. Overall, the thread offers valuable techniques for solving series convergence issues.
Lisa91
Messages
29
Reaction score
0
I have a problem with convergence of two series:

1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+...

1+ \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{5}}+\frac{1}{ \sqrt{6}}-\frac{1}{\sqrt{7}}-\frac{1}{\sqrt{8}}+...

Could you give me please any hints so that I can solve them?
 
Last edited by a moderator:
Physics news on Phys.org
Lisa91 said:
I have a problem with convergence of two series:

1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+...

1+ \frac{1}{sqrt{2}}-\frac{1}{sqrt{3}}-\frac{1}{sqrt{4}}+\frac{1}{sqrt{5}}+\frac{1}{sqrt{6}}-\frac{1}{sqrt{7}}-\frac{1}{sqrt{8}}+...

Could you give me please any hints so that I can solve them?

The first series is a classical example of the properties of a conditionally convergent series. We start with the well known series... $\displaystyle 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} -... = \ln 2$ (1)

... from which we derive...

$\displaystyle \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} - \frac{1}{12} + \frac{1}{14} -... = \frac{\ln 2}{2}$ (2)

... that can be written as...

$\displaystyle 0 + \frac{1}{2} + 0 - \frac{1}{4} + 0 + \frac{1}{6}+ 0 - \frac{1}{8} + 0 + \frac{1}{10}+ 0 - \frac{1}{12} + 0 + \frac{1}{14} +... = \frac{\ln 2}{2}$ (3)

The we cas sum 'term by term' (1) and (3) obtaining...

$\displaystyle 1 - \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + ... = \frac{3}{2}\ \ln 2$ (4)

Kind regards

$\chi$ $\sigma$
 
May I write
1- \frac{1}{sqrt{2}}+\frac{1}{sqrt{3}}-\frac{1}{sqrt{4}}+\frac{1}{sqrt{5}}-\frac{1}{sqrt{6}}+\frac{1}{sqrt{7}}-... = (\lnn)^{\frac{1}{2}}
 
Lisa91 said:
I have a problem with convergence of two series:

1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+...

1+ \frac{1}{sqrt{2}}-\frac{1}{sqrt{3}}-\frac{1}{sqrt{4}}+\frac{1}{sqrt{5}}+\frac{1}{sqrt{6}}-\frac{1}{sqrt{7}}-\frac{1}{sqrt{8}}+...

Could you give me please any hints so that I can solve them?

The second series can be written in the form...

$\displaystyle \sum_{n=0}^{\infty} (-1)^{n} a_{n}\ ,\ a_{n}= \frac{1}{\sqrt{2 n + 1}} + \frac{1}{\sqrt{2 n + 2}}$ (1)

Now is $a_{n+1}<a_{n}$ and $\lim_{n \rightarrow \infty} a_{n}=0$ so that for the Leibnitz's criterion the series converges...

Kind regards

$\chi$ $\sigma$
 
Just a few $\displaystyle LaTeX$ suggestions:

To express the square root of a value, use the code \sqrt{x}, and for the nth root, use \sqrt[n]{x}.

Your natural log function on the right side is rendered incorrectly because there is no space between it and its argument. I suggest the code \ln(n).
 
Lisa91 said:
May I write
1- \frac{1}{sqrt{2}}+\frac{1}{sqrt{3}}-\frac{1}{sqrt{4}}+\frac{1}{sqrt{5}}-\frac{1}{sqrt{6}}+\frac{1}{sqrt{7}}-... = (\lnn)^{\frac{1}{2}}

Is...

$\displaystyle 1- \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{7}}-...= (1-\sqrt{2})\ \zeta(\frac{1}{2}) = .6048986434...$ (1)

Kind regards

$\chi$ $\sigma$
 
Because is...

$\displaystyle 1- \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{7}}-...= (1-\sqrt{2})\ \zeta(\frac{1}{2})$ (1)

... where $\zeta(*)$ is the Riemann Zeta Function, it is also...

$\displaystyle \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{4}}+\frac{1}{\sqrt{6}}-\frac{1}{\sqrt{8}}+\frac{1}{\sqrt{10}}-\frac{1}{\sqrt{12}}+\frac{1}{\sqrt{14}}-...= \frac{1-\sqrt{2}}{\sqrt{2}}\ \zeta(\frac{1}{2})$ (2)

Now remembering the definition of Diriclet Beta Function...

$\displaystyle \beta(s)= \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n + 1)^{s}}$ (3)

... we obtain...

$\displaystyle 1 + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{5}} + \frac{1}{\sqrt{6}} - ... = \frac{1-\sqrt{2}}{\sqrt{2}}\ \zeta(\frac{1}{2}) + \beta(\frac{1}{2})$ (4)

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
2K