I have to teach myself pre-calculus and basic calculus over the summer, and whilst covering matrices the chapter on solving simultaneous systems of equations using matrices puts forth several methods, one of which being the method of Gaussian elimination with augmented matrices. I understand why the first element of the newly augmented matrix has to now equal zero, but the formula for adjusting every other element on the first row wasn't clearly defined in my book, and they show the result without going through how to evaluate the other elements. Is it basically making a function like "Row 1 minus 3 x (Row 2)" to somehow make the first element equal zero, or is there an ironclad method for each row reduction?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Solving Simultaneous equations using Matrices

**Physics Forums | Science Articles, Homework Help, Discussion**