Solving the Heat Equation with Initial Conditions

Click For Summary
SUMMARY

The discussion focuses on solving the heat equation with initial conditions using the series representation \( T(x,t) = \sum_{n=1}^{\infty} A_n \cos(\lambda_n x) \exp(-\lambda_n^2 t) \). The eigenvalues are determined by the equation \( \tan(\lambda_n) = \frac{1}{\lambda_n} \). The initial condition is specified as \( T(x,0) = 1 \), and the coefficients \( A_n \) are calculated using the integral \( A_n = 2 \int_0^1 \cos(\lambda_n x) dx \). The series representation is numerically constructed, yielding specific coefficients for various eigenvalues.

PREREQUISITES
  • Understanding of Fourier series and eigenvalue problems
  • Familiarity with the heat equation in partial differential equations
  • Knowledge of numerical integration techniques
  • Proficiency in using mathematical software for computations, such as Desmos
NEXT STEPS
  • Learn about numerical methods for solving partial differential equations
  • Study the properties of eigenvalues and eigenfunctions in Fourier series
  • Explore the application of the heat equation in real-world scenarios
  • Investigate advanced numerical integration techniques for series coefficients
USEFUL FOR

Mathematicians, physicists, and engineers interested in solving the heat equation, particularly those working with initial conditions and series solutions in applied mathematics.

Dustinsfl
Messages
2,217
Reaction score
5
I have already solved the main portions.
I have
$$
T(x,t) = \sum_{n = 1}^{\infty}A_n\cos\lambda_n x\exp(-\lambda_n^2t)
$$
The eigenvalues are determined by
$$
\tan\lambda_n = \frac{1}{\lambda_n}
$$
The initial condition is $T(x,0) =1$.
For the particular case of $f(x) = 1$, numerically determine the series coefficients $A_n$ and construct a series representation for $T(x,t)$.
How do I do this?
$$
A_n = 2\int_0^1\cos\lambda_n xdx
$$
 
Physics news on Phys.org
dwsmith said:
I have already solved the main portions.
I have
$$
T(x,t) = \sum_{n = 1}^{\infty}A_n\cos\lambda_n x\exp(-\lambda_n^2t)
$$
The eigenvalues are determined by
$$
\tan\lambda_n = \frac{1}{\lambda_n}
$$
The initial condition is $T(x,0) =1$.
For the particular case of $f(x) = 1$, numerically determine the series coefficients $A_n$ and construct a series representation for $T(x,t)$.
How do I do this?
$$
A_n = 2\int_0^1\cos\lambda_n xdx
$$
$$
\begin{alignat*}{3}
T(x,t) & = & 1.7624\cos(0.86x)e^{-0.86^2t} - 0.1638\cos(3.426x)e^{-3.426^2t} + 0.476\cos(6.437x)e^{6.437^2t}\\
& - & 0.0218\cos(9.529x)e^{-9.529^2t} + 0.0124\cos(12.645x)e^{-12.645^2t} - 0.0080\cos(15.771x)e^{-15.771^2t}\\
& + & 0.0055\cos(18.902x)e^{-18.902^2t} - 0.0041\cos(22.036x)e^{-22.036^2t} + 0.0031\cos(25.172x)e^{-25.172^2t}\\
& - & 0.0025\cos(38.31x)e^{-28.31^2t}
\end{alignat*}
$$
 
dwsmith said:
I have already solved the main portions.
I have
$$
T(x,t) = \sum_{n = 1}^{\infty}A_n\cos\lambda_n x\exp(-\lambda_n^2t)
$$
The eigenvalues are determined by
$$
\tan\lambda_n = \frac{1}{\lambda_n}
$$
The initial condition is $T(x,0) =1$.
For the particular case of $f(x) = 1$, numerically determine the series coefficients $A_n$ and construct a series representation for $T(x,t)$.
How do I do this?
$$
A_n = 2\int_0^1\cos\lambda_n xdx
$$

Hi dwsmith, :)

Can you please clarify as to what \(f\) is?

Kind Regards,
Sudharaka.
 
My guess is the initial condition since $f$ is usually denoted as an arbitrary IC.
 
dwsmith said:
How do I do this?
$$
A_n = 2\int_0^1\cos\lambda_n xdx
$$

\[A_n=2\int_0^1\cos\lambda_n xdx=\left.\frac{2\sin\lambda_n x}{\lambda_n}\right|_{0}^{1}=\frac{2\sin\lambda_n}{\lambda_n}\]

dwsmith said:
$$
\begin{alignat*}{3}
T(x,t) & = & 1.7624\cos(0.86x)e^{-0.86^2t} - 0.1638\cos(3.426x)e^{-3.426^2t} + 0.476\cos(6.437x)e^{6.437^2t}\\
& - & 0.0218\cos(9.529x)e^{-9.529^2t} + 0.0124\cos(12.645x)e^{-12.645^2t} - 0.0080\cos(15.771x)e^{-15.771^2t}\\
& + & 0.0055\cos(18.902x)e^{-18.902^2t} - 0.0041\cos(22.036x)e^{-22.036^2t} + 0.0031\cos(25.172x)e^{-25.172^2t}\\
& - & 0.0025\cos(38.31x)e^{-28.31^2t}
\end{alignat*}
$$

I don't understand why you wrote this. Did you obtain this by simplifying the series mentioned in your first post?
 
That is the series with the eigenvalues obtain from Desmos of the first 10 positive of $\tan x = \frac{1}{x}$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
477
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K