MHB Solving the Heat Equation with Initial Conditions

Dustinsfl
Messages
2,217
Reaction score
5
I have already solved the main portions.
I have
$$
T(x,t) = \sum_{n = 1}^{\infty}A_n\cos\lambda_n x\exp(-\lambda_n^2t)
$$
The eigenvalues are determined by
$$
\tan\lambda_n = \frac{1}{\lambda_n}
$$
The initial condition is $T(x,0) =1$.
For the particular case of $f(x) = 1$, numerically determine the series coefficients $A_n$ and construct a series representation for $T(x,t)$.
How do I do this?
$$
A_n = 2\int_0^1\cos\lambda_n xdx
$$
 
Physics news on Phys.org
dwsmith said:
I have already solved the main portions.
I have
$$
T(x,t) = \sum_{n = 1}^{\infty}A_n\cos\lambda_n x\exp(-\lambda_n^2t)
$$
The eigenvalues are determined by
$$
\tan\lambda_n = \frac{1}{\lambda_n}
$$
The initial condition is $T(x,0) =1$.
For the particular case of $f(x) = 1$, numerically determine the series coefficients $A_n$ and construct a series representation for $T(x,t)$.
How do I do this?
$$
A_n = 2\int_0^1\cos\lambda_n xdx
$$
$$
\begin{alignat*}{3}
T(x,t) & = & 1.7624\cos(0.86x)e^{-0.86^2t} - 0.1638\cos(3.426x)e^{-3.426^2t} + 0.476\cos(6.437x)e^{6.437^2t}\\
& - & 0.0218\cos(9.529x)e^{-9.529^2t} + 0.0124\cos(12.645x)e^{-12.645^2t} - 0.0080\cos(15.771x)e^{-15.771^2t}\\
& + & 0.0055\cos(18.902x)e^{-18.902^2t} - 0.0041\cos(22.036x)e^{-22.036^2t} + 0.0031\cos(25.172x)e^{-25.172^2t}\\
& - & 0.0025\cos(38.31x)e^{-28.31^2t}
\end{alignat*}
$$
 
dwsmith said:
I have already solved the main portions.
I have
$$
T(x,t) = \sum_{n = 1}^{\infty}A_n\cos\lambda_n x\exp(-\lambda_n^2t)
$$
The eigenvalues are determined by
$$
\tan\lambda_n = \frac{1}{\lambda_n}
$$
The initial condition is $T(x,0) =1$.
For the particular case of $f(x) = 1$, numerically determine the series coefficients $A_n$ and construct a series representation for $T(x,t)$.
How do I do this?
$$
A_n = 2\int_0^1\cos\lambda_n xdx
$$

Hi dwsmith, :)

Can you please clarify as to what \(f\) is?

Kind Regards,
Sudharaka.
 
My guess is the initial condition since $f$ is usually denoted as an arbitrary IC.
 
dwsmith said:
How do I do this?
$$
A_n = 2\int_0^1\cos\lambda_n xdx
$$

\[A_n=2\int_0^1\cos\lambda_n xdx=\left.\frac{2\sin\lambda_n x}{\lambda_n}\right|_{0}^{1}=\frac{2\sin\lambda_n}{\lambda_n}\]

dwsmith said:
$$
\begin{alignat*}{3}
T(x,t) & = & 1.7624\cos(0.86x)e^{-0.86^2t} - 0.1638\cos(3.426x)e^{-3.426^2t} + 0.476\cos(6.437x)e^{6.437^2t}\\
& - & 0.0218\cos(9.529x)e^{-9.529^2t} + 0.0124\cos(12.645x)e^{-12.645^2t} - 0.0080\cos(15.771x)e^{-15.771^2t}\\
& + & 0.0055\cos(18.902x)e^{-18.902^2t} - 0.0041\cos(22.036x)e^{-22.036^2t} + 0.0031\cos(25.172x)e^{-25.172^2t}\\
& - & 0.0025\cos(38.31x)e^{-28.31^2t}
\end{alignat*}
$$

I don't understand why you wrote this. Did you obtain this by simplifying the series mentioned in your first post?
 
That is the series with the eigenvalues obtain from Desmos of the first 10 positive of $\tan x = \frac{1}{x}$.
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top