MHB Solving the Identity Challenge: $3=\sqrt{1+2...9}$

Click For Summary
The discussion centers on proving the equation $3=\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+6\sqrt{1+7\sqrt{1+8\sqrt{1+9--}}}}}}}}$. Participants express admiration for the complexity and elegance of the mathematical expression. The challenge involves unraveling the nested square roots to validate the equality. The excitement is palpable, with users sharing their appreciation for the problem's intricacy. This mathematical identity showcases the beauty of algebraic manipulation and nested radicals.
Albert1
Messages
1,221
Reaction score
0
prove:
$3=\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+6\sqrt{1+7\sqrt{1+8\sqrt{1+9--}}}}}}}}$
 
Mathematics news on Phys.org
Albert said:
prove:
$3=\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+6\sqrt{1+7\sqrt{1+8\sqrt{1+9--}}}}}}}}$
let:$f(x)=x(x+2)---(1)$
then: $f(x+1)=(x+1)(x+3)=(x+2)^2-1$
$\therefore (x+2)=\sqrt {1+f(x+1)}---(2)$
from (1)and (2):
$f(x)=x(x+2)=x\sqrt{1+f(x+1)}---(3)$
using (3) recursively we get :
$f(x)=x\sqrt{1+(x+1)\sqrt{1+f(x+2)}}$
$=x\sqrt{1+(x+1)\sqrt{1+(x+2)\sqrt{1+f(x+3)---}}}=x(x+2)$
let:$x=1$
and we get the result
 
I have to take a moment and "Oooh!" and "Ahhhh!" over this.

Oooh!

Ahhhh!

Nice one! (Bow)

-Dan
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 41 ·
2
Replies
41
Views
5K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 34 ·
2
Replies
34
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K