MHB Solving the Identity Challenge: $3=\sqrt{1+2...9}$

Click For Summary
The discussion centers on proving the equation $3=\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+6\sqrt{1+7\sqrt{1+8\sqrt{1+9--}}}}}}}}$. Participants express admiration for the complexity and elegance of the mathematical expression. The challenge involves unraveling the nested square roots to validate the equality. The excitement is palpable, with users sharing their appreciation for the problem's intricacy. This mathematical identity showcases the beauty of algebraic manipulation and nested radicals.
Albert1
Messages
1,221
Reaction score
0
prove:
$3=\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+6\sqrt{1+7\sqrt{1+8\sqrt{1+9--}}}}}}}}$
 
Mathematics news on Phys.org
Albert said:
prove:
$3=\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+6\sqrt{1+7\sqrt{1+8\sqrt{1+9--}}}}}}}}$
let:$f(x)=x(x+2)---(1)$
then: $f(x+1)=(x+1)(x+3)=(x+2)^2-1$
$\therefore (x+2)=\sqrt {1+f(x+1)}---(2)$
from (1)and (2):
$f(x)=x(x+2)=x\sqrt{1+f(x+1)}---(3)$
using (3) recursively we get :
$f(x)=x\sqrt{1+(x+1)\sqrt{1+f(x+2)}}$
$=x\sqrt{1+(x+1)\sqrt{1+(x+2)\sqrt{1+f(x+3)---}}}=x(x+2)$
let:$x=1$
and we get the result
 
I have to take a moment and "Oooh!" and "Ahhhh!" over this.

Oooh!

Ahhhh!

Nice one! (Bow)

-Dan
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 34 ·
2
Replies
34
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K