Solving the Identity Challenge: $3=\sqrt{1+2...9}$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Challenge Identity
Click For Summary
SUMMARY

The forum discussion centers on proving the mathematical identity $3=\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+6\sqrt{1+7\sqrt{1+8\sqrt{1+9--}}}}}}}}$. Participants express admiration for the elegance of the proof, highlighting the nested radical structure. The discussion emphasizes the beauty of mathematical expressions and the satisfaction derived from solving complex identities.

PREREQUISITES
  • Understanding of nested radicals
  • Familiarity with mathematical proofs
  • Basic algebraic manipulation skills
  • Knowledge of square roots and their properties
NEXT STEPS
  • Explore advanced techniques in proving identities involving nested radicals
  • Study the properties of square roots and their applications in algebra
  • Learn about mathematical induction as a proof technique
  • Investigate other mathematical identities and their proofs
USEFUL FOR

Mathematicians, educators, students studying advanced algebra, and anyone interested in the beauty of mathematical proofs and identities.

Albert1
Messages
1,221
Reaction score
0
prove:
$3=\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+6\sqrt{1+7\sqrt{1+8\sqrt{1+9--}}}}}}}}$
 
Mathematics news on Phys.org
Albert said:
prove:
$3=\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+6\sqrt{1+7\sqrt{1+8\sqrt{1+9--}}}}}}}}$
let:$f(x)=x(x+2)---(1)$
then: $f(x+1)=(x+1)(x+3)=(x+2)^2-1$
$\therefore (x+2)=\sqrt {1+f(x+1)}---(2)$
from (1)and (2):
$f(x)=x(x+2)=x\sqrt{1+f(x+1)}---(3)$
using (3) recursively we get :
$f(x)=x\sqrt{1+(x+1)\sqrt{1+f(x+2)}}$
$=x\sqrt{1+(x+1)\sqrt{1+(x+2)\sqrt{1+f(x+3)---}}}=x(x+2)$
let:$x=1$
and we get the result
 
I have to take a moment and "Oooh!" and "Ahhhh!" over this.

Oooh!

Ahhhh!

Nice one! (Bow)

-Dan
 

Similar threads

  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K