Solving the Integral: $\int_{0}^{1}\dfrac{x^4(1-x)^4}{1+x^2}dx$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Integral
Albert1
Messages
1,221
Reaction score
0
\[\int_{0}^{1}\dfrac{x^4(1-x)^4}{1+x^2}dx=?\]
 
Last edited:
Physics news on Phys.org
Albert said:
\[\int_{0}^{1}\dfrac{x^4(1-x)^4}{1+x^2}dx=?\]

expanding we get

$x^6-4x^5+5x^4-4x^2+4-\frac{4}{1+x^2}$

integrating we get

$\frac{x^7}{7} – \frac{2}{3}x^6+ x^5-\frac{4}{3}x^3 + 4x – 4\arctan x$

x=1 gives $\frac{1}{7} – \frac{2}{3}+1-\frac{4}{3} + 4 – \pi = \frac{22}{7}- \pi$ and at x =0 it is zero hence the integral is $\frac{22}{7}- \pi$
 
Last edited:
kaliprasad said:
expanding we get

$x^6-4x^5+5x^4-4x^2+4-\frac{4}{1+x^2}$

integrating we get

$\frac{x^7}{7} – \frac{2}{3}x^6+ x^5-\frac{4}{3}x^2 + 4x – 4\arctan x$

x=1 gives $\frac{1}{7} – \frac{2}{3}+1-\frac{4}{3} + 4 – \pi = \frac{22}{7}- \pi$ and at x =0 it is zero hence the integral is $\frac{22}{7}- \pi$
answer correct , a typo exists in your intergrating
 
Albert said:
answer correct , a typo exists in your intergrating

thanks I have done the needful
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K