Albert1
- 1,221
- 0
\[\int_{0}^{1}\dfrac{x^4(1-x)^4}{1+x^2}dx=?\]
Last edited:
Albert said:\[\int_{0}^{1}\dfrac{x^4(1-x)^4}{1+x^2}dx=?\]
kaliprasad said:expanding we get
$x^6-4x^5+5x^4-4x^2+4-\frac{4}{1+x^2}$
integrating we get
$\frac{x^7}{7} – \frac{2}{3}x^6+ x^5-\frac{4}{3}x^2 + 4x – 4\arctan x$
x=1 gives $\frac{1}{7} – \frac{2}{3}+1-\frac{4}{3} + 4 – \pi = \frac{22}{7}- \pi$ and at x =0 it is zero hence the integral is $\frac{22}{7}- \pi$
Albert said:answer correct , a typo exists in your intergrating