Solving the Poisson equation with spherically symmetric functions

Click For Summary
SUMMARY

The discussion focuses on solving the Poisson equation using spherically symmetric functions, specifically the equation -Δu(x) = (q/πa³)e^(-2||x||/a). The solution is derived through integration techniques, resulting in u(x) = (1/||x||)(q/4π). Participants clarify that the problem does not involve partial differential equations (PDEs) and suggest using the lecture's formula for a more straightforward approach. The confusion regarding the distinction between ||x|| and r is also addressed, emphasizing their roles in the integration process.

PREREQUISITES
  • Understanding of the Poisson equation and its applications
  • Familiarity with integration techniques in multivariable calculus
  • Knowledge of spherical coordinates and symmetry in mathematical functions
  • Basic concepts of functional analysis related to fundamental solutions
NEXT STEPS
  • Study the derivation of fundamental solutions for the Poisson equation
  • Explore integration techniques in spherical coordinates
  • Learn about the properties of spherically symmetric functions
  • Investigate the relationship between PDEs and ordinary differential equations (ODEs)
USEFUL FOR

Mathematicians, physicists, and engineering students interested in solving differential equations, particularly those focusing on potential theory and mathematical physics.

docnet
Messages
796
Reaction score
486
Homework Statement
psb
Relevant Equations
psb
Screen Shot 2021-02-28 at 3.46.42 AM.png

I tried to follow the method outlined in lectures, and ended up with an incorrect solution. My understanding of PDEs is a bit shaky so I thank anyone for constructive feedback or information. :bow:

The solution to the Poisson equation
\begin{equation}
-\Delta u(x)=\frac{q}{\pi a^3}e^{-\frac{2||x||}{a}}
\end{equation}
is given by
\begin{equation}
u(x)=\int_{R^3}\Phi(x-y)f(y)dy
\end{equation}
in ##R^3## and spherically symmetric ##f(y)## this is
\begin{equation}
u(x)=\frac{1}{2||x||}\int_0^\infty r\tilde{f}(r)\Big(||x||+r-\Big|||x||-r\Big|\Big)dr
\end{equation}
\begin{equation}
\frac{1}{2||x||}\int_0^\infty r\frac{q}{\pi a^3}e^{-\frac{2||x||}{a}}\Big(||x||+r-\Big|||x||-r\Big|\Big)dr
\end{equation}
\begin{equation}
\frac{1}{||x||}\frac{q}{\pi a^3}\int_0^\infty e^{-\frac{2r}{a}}r^2dr
\end{equation}
after integration by parts
\begin{equation}
u(x)=\frac{1}{||x||}\frac{q}{4\pi}
\end{equation}
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
docnet said:
My understanding of PDEs
Shouldn't be a problem :smile: in this case: no PDE involved !
First a question: it says
1614514885696.png
And what would that be ? My telepathic capabilities fail me.

You have (from e.g. here) $$ \Delta u(r) = {1\over r^2}{\partial \over \partial r} \Bigl ( r^2 {\partial u\over \partial r} \Bigr ) = - {q\over 4\pi a^3}\; e^{\displaystyle {-{2r\over a}}}$$ which is no longer a PDE, so we can replace all ##\ \partial \ ## by ##\ ## d ##\ ## !

But the ##\ formula\ from\ the \ lecture\ ## might offer a more comfortable path to the solution ?##\ ##
 
  • Like
Likes   Reactions: docnet, Keith_McClary and Delta2
BvU said:
Shouldn't be a problem :smile: in this case: no PDE involved !
First a question: it says
And what would that be ? My telepathic capabilities fail me.

You have (from e.g. here) $$ \Delta u(r) = {1\over r^2}{\partial \over \partial r} \Bigl ( r^2 {\partial u\over \partial r} \Bigr ) = - {q\over 4\pi a^3}\; e^{\displaystyle {-{2r\over a}}}$$ which is no longer a PDE, so we can replace all ##\ \partial \ ## by ##\ ## d ##\ ## !

But the ##\ formula\ from\ the \ lecture\ ## might offer a more comfortable path to the solution ?##\ ##

Thanks for the reply. The formula for the lecture goes like

##-\Delta u=f## has a fundamental solution ##\int_{R^n}\Phi(x-y)f(y)dy##

where ##\Phi(x)=\frac{1}{n(n-2)w_n||x||^{n-2}}## and ##w_n=\frac{4\pi}{3}## for ##R^3##.

For spherically symmetric ##f##, the formula becomes $$\frac{1}{2||x||}\int^\infty_0rf(r)\Big(||x||+r-\Big|||x||-r\Big|\Big)dr$$

One thing I am confused about is why the formula distinguishes between ##||x||## and ##r## since they are the same parameters?
 
Last edited:

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
12
Views
2K