Solving the Poisson equation with spherically symmetric functions

docnet
Messages
796
Reaction score
488
Homework Statement
psb
Relevant Equations
psb
Screen Shot 2021-02-28 at 3.46.42 AM.png

I tried to follow the method outlined in lectures, and ended up with an incorrect solution. My understanding of PDEs is a bit shaky so I thank anyone for constructive feedback or information. :bow:

The solution to the Poisson equation
\begin{equation}
-\Delta u(x)=\frac{q}{\pi a^3}e^{-\frac{2||x||}{a}}
\end{equation}
is given by
\begin{equation}
u(x)=\int_{R^3}\Phi(x-y)f(y)dy
\end{equation}
in ##R^3## and spherically symmetric ##f(y)## this is
\begin{equation}
u(x)=\frac{1}{2||x||}\int_0^\infty r\tilde{f}(r)\Big(||x||+r-\Big|||x||-r\Big|\Big)dr
\end{equation}
\begin{equation}
\frac{1}{2||x||}\int_0^\infty r\frac{q}{\pi a^3}e^{-\frac{2||x||}{a}}\Big(||x||+r-\Big|||x||-r\Big|\Big)dr
\end{equation}
\begin{equation}
\frac{1}{||x||}\frac{q}{\pi a^3}\int_0^\infty e^{-\frac{2r}{a}}r^2dr
\end{equation}
after integration by parts
\begin{equation}
u(x)=\frac{1}{||x||}\frac{q}{4\pi}
\end{equation}
 
Physics news on Phys.org
docnet said:
My understanding of PDEs
Shouldn't be a problem :smile: in this case: no PDE involved !
First a question: it says
1614514885696.png
And what would that be ? My telepathic capabilities fail me.

You have (from e.g. here) $$ \Delta u(r) = {1\over r^2}{\partial \over \partial r} \Bigl ( r^2 {\partial u\over \partial r} \Bigr ) = - {q\over 4\pi a^3}\; e^{\displaystyle {-{2r\over a}}}$$ which is no longer a PDE, so we can replace all ##\ \partial \ ## by ##\ ## d ##\ ## !

But the ##\ formula\ from\ the \ lecture\ ## might offer a more comfortable path to the solution ?##\ ##
 
  • Like
Likes docnet, Keith_McClary and Delta2
BvU said:
Shouldn't be a problem :smile: in this case: no PDE involved !
First a question: it says
And what would that be ? My telepathic capabilities fail me.

You have (from e.g. here) $$ \Delta u(r) = {1\over r^2}{\partial \over \partial r} \Bigl ( r^2 {\partial u\over \partial r} \Bigr ) = - {q\over 4\pi a^3}\; e^{\displaystyle {-{2r\over a}}}$$ which is no longer a PDE, so we can replace all ##\ \partial \ ## by ##\ ## d ##\ ## !

But the ##\ formula\ from\ the \ lecture\ ## might offer a more comfortable path to the solution ?##\ ##

Thanks for the reply. The formula for the lecture goes like

##-\Delta u=f## has a fundamental solution ##\int_{R^n}\Phi(x-y)f(y)dy##

where ##\Phi(x)=\frac{1}{n(n-2)w_n||x||^{n-2}}## and ##w_n=\frac{4\pi}{3}## for ##R^3##.

For spherically symmetric ##f##, the formula becomes $$\frac{1}{2||x||}\int^\infty_0rf(r)\Big(||x||+r-\Big|||x||-r\Big|\Big)dr$$

One thing I am confused about is why the formula distinguishes between ##||x||## and ##r## since they are the same parameters?
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top