Solving this Differential Equation using Convolution

Click For Summary
SUMMARY

The differential equation $$5s(t)-4s''(t)=r(t)$$ can be solved using convolution, where $$s=q*r$$ and $$q(t)=c_1*\exp(-c_2*|(t)|)$$. The discussion revolves around determining the values of $$c_1$$ and $$c_2$$, particularly their sum $$c_1+c_2$$. Participants express confusion regarding the dimensionality of these constants and the proper interpretation of the convolution operation. The conversation emphasizes the importance of clarity in mathematical notation and the necessity of adhering to forum guidelines.

PREREQUISITES
  • Understanding of differential equations, specifically second-order linear equations.
  • Familiarity with convolution operations in mathematical analysis.
  • Knowledge of LaTeX for proper mathematical formatting.
  • Basic concepts of exponential functions and their properties.
NEXT STEPS
  • Study the properties of convolution in the context of differential equations.
  • Learn how to apply the Laplace transform to solve differential equations.
  • Investigate the implications of dimensional analysis in mathematical constants.
  • Explore advanced topics in functional analysis related to convolution and differential equations.
USEFUL FOR

Students and professionals in mathematics, engineering, and physics who are working on solving differential equations and applying convolution techniques in their analyses.

Jack1235
Messages
2
Reaction score
1
Homework Statement
The differential equation ##5s(t)-4s''(t)=r(t)## can be solved by the convolution ##s=q*r## where ##q(t)=c_1*\exp(-c_2*|(t)|)##. Find ##c_1+c_2##.
Relevant Equations
$$\int_{-\infty}^{\infty} r(t-u)s(u) \,du$$
$s=c_1*\exp(-c_2*|(t)|)*r(t)$ But how can I solve $c_1+c_2$ ?
 
Physics news on Phys.org
Hello Jack,
:welcome:
I am very much afraid your post will be deleted by one of the mentors soon: it doesn't comply with the PF rules and guidelines (there is no posted apparent effort from your side).
Before that: ##\LaTeX## has to be enclosed by double $$ (for displayed math) and double ## for in-line math:

The differential equation $$5s(t)-4s''(t)=r(t)$$ can be solved by the convolution $$s=q*r$$ where $$q(t)=c_1*\exp(-c_2*|(t)|)$$. Find $$c_1+c_2$$

Relevant Equations: $$\left (\int_{-\infty}^{\infty} r(t-u)s(u) \,du\right )$$
$$s=c_1*\exp(-c_2*|(t)|)*r(t)$$ But how can I solve $$c_1+c_2$$ ?

With ## it looks better:

Homework Statement: The differential equation ##5s(t)-4s''(t)=r(t)## can be solved by the convolution ##s=q*r## where ##q(t)=c_1*\exp(-c_2*|(t)|)##. Find ##c_1+c_2##.​
Relevant Equations: ##\int_{-\infty}^{\infty} r(t-u)s(u) \,du##​
##s=c_1*\exp(-c_2*|(t)|)*r(t)## But how can I solve ##c_1+c_2## ?​
##\ ##​
 
So this is my attempt: ##5(q*r)-4(q*r)''=r(t)## and ##5(C_1\exp(-C_2|t|)*r)-4*(C_1*\exp(-C_2*|t|)*r)''=r(t)##
In addition to that: ##(q*r)''=(-i*2*\pi*\widehat{ts}(\nu))'##
 
Last edited:
  • Like
Likes   Reactions: BvU
BvU said:
I am very much afraid your post will be deleted by one of the mentors soon: it doesn't comply with the PF rules and guidelines (there is no posted apparent effort from your side).
Since the OP has (belatedly) shown some effort, no moderator action has been taken here.
 
  • Like
Likes   Reactions: BvU
Good. Now, do I have to sort out when a * stands for multiplication and when it means convolution ?

I also find it strange the problem statement asks for ##c_1 + c_2##. It seems to me they have different dimensions and can not be added. Could it be the problem composer means to ask for ##c_1## and ##c_2## ?

Furthermore: the relevant equation does not really look like an equation at all.
I suppose you meant $$s = q*r \ \ \Leftrightarrow \ \ s(t) =\int_0^t q(\tau) r(t-\tau) \, d\tau \ \ ?$$

Could you please also explain what you do in post #3 ?

##\ ##
 
Note: I tweaked the first post to get most of the LaTeX to render.
 
Then post #2 now looks pretty dumb ...:biggrin:
 

Similar threads

Replies
7
Views
1K
Replies
8
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
7
Views
2K