UrbanXrisis
- 1,192
- 1
if x^2+y^2=25, what is the value of \frac{d^2y}{dx^2} at the point (4,3)?
x^2+y^2=25
2x+2y\frac{dy}{dx}=0
\frac{dy}{dx}=-\frac{2x}{2y}
\frac{dy}{dx}=-\frac{3}{4}
\frac{d^2y}{dx^2}=\frac{-y+\frac{dy}{dx}(-x)}{x^2}
\frac{d^2y}{dx^2}=\frac{-3+-\frac{3}{4}(-4)}{4^2}
\frac{d^2y}{dx^2}=0
where did I go wrong?
x^2+y^2=25
2x+2y\frac{dy}{dx}=0
\frac{dy}{dx}=-\frac{2x}{2y}
\frac{dy}{dx}=-\frac{3}{4}
\frac{d^2y}{dx^2}=\frac{-y+\frac{dy}{dx}(-x)}{x^2}
\frac{d^2y}{dx^2}=\frac{-3+-\frac{3}{4}(-4)}{4^2}
\frac{d^2y}{dx^2}=0
where did I go wrong?