Solving ##y'' - 5 y' - 6y = e^{3x}## using Laplace Transform

Click For Summary
SUMMARY

The discussion focuses on solving the differential equation \(y'' - 5y' - 6y = e^{3x}\) using the Laplace Transform method. The initial conditions are \(y(0) = 2\) and \(y'(0) = 1\). The solution involves applying the Laplace Transform, leading to the equation \(Y(s) = \frac{2s^2 - 15s + 27}{(s-3)(s+1)(s-6)}\). The participants identify an arithmetic error in the original solution, specifically in the term \(2s - 9\), which should be corrected to \(2s - 8\) to match the book's answer.

PREREQUISITES
  • Understanding of Laplace Transforms and their properties
  • Familiarity with solving second-order linear differential equations
  • Knowledge of partial fraction decomposition techniques
  • Basic skills in algebraic manipulation and verification of solutions
NEXT STEPS
  • Study the application of Laplace Transforms in solving differential equations
  • Learn about partial fraction decomposition in detail
  • Explore the method of characteristic equations for solving linear differential equations
  • Utilize computational tools like Wolfram Alpha or Mathematica for verifying arithmetic in complex calculations
USEFUL FOR

Students, educators, and professionals in mathematics or engineering fields who are working with differential equations and seeking to enhance their problem-solving skills using the Laplace Transform method.

Hall
Messages
351
Reaction score
87
Homework Statement
Nil
Relevant Equations
Nil
We have to solve
$$
\begin{align*}
y'' - 5y' - 6y = e^{3x} \\
y(0) = 2,~~ y'(0) = 1 \\
\end{align*}
$$
Applying Laplace Transform the equation
$$
\begin{align*}
L [ y''] - 5 L[y'] - 6 L[y] = L [ e^{3x} ] \\
s^2 Y(s) - \left( s y(0) + y'(0) \right) - 5s Y(s) + y(0) - 6 Y(s) = \frac{1}{s-3} \\
Y(s) \{ s^2 - 5s - 6\} = \frac{1}{s-3} + 2s - 9 \\
Y(s) = \frac{2s^2 - 15s +27}{(s-3) (s+1) (s-6)} \\
\textrm{On Partial Fraction Decomposition}\\
\frac{A}{s-3} + \frac{B}{s+1} + \frac{C}{s-6} = \frac{2s^2 -15s +27}{(s-3) (s+1) (s-6)} \\
A (s+1)(s-6) + B(s-3)(s-6) + C (s-3)(s+1) = 2s^2 -15s +27 \\
\textrm{putting s =6} \\
21C = 9 \implies C = \frac{3}{7} \\
\textrm{similarly,} \\
s = -1 ~\text{gives}~ B = 11/7 \\
s = 3 ~ \text{gives} ~ A = 0\\
\textrm{Thus,}~~ y_p = 11/7 L^{-1} [1/(s+1)] + 3/7 L^{-1} [1/(s-6)] \\
y_p = 11/7 e^{-x} + 3/7 e^{6x}
\end{align*}
$$

But this doesn't match with the answer given in the book. Where is my mistake?
 
Physics news on Phys.org
For starters, <br /> \frac{1}{s-3} + 2s - 9 = \frac{1 + (2s-9)(s-3)}{s-3} = \frac{2s^2 - 15s + 28}{s-3}.
 
  • Like
Likes   Reactions: Hall and FactChecker
At the end of your third line, I think I get a -1 instead of a -9.
In general, it would be good for you to double-check your arithmetic.
 
May I suggest using Wolfram alpha or similar (Mathematica is great if you have access to it) to double check arithmetic?
 
  • Like
Likes   Reactions: FactChecker
Hall said:
Homework Statement:: Nil
Relevant Equations:: Nil

We have to solve
$$
\begin{align*}
y'' - 5y' - 6y = e^{3x} \\
y(0) = 2,~~ y'(0) = 1 \\
\end{align*}
$$
Applying Laplace Transform the equation
$$
\begin{align*}
L [ y''] - 5 L[y'] - 6 L[y] = L [ e^{3x} ] \\
s^2 Y(s) - \left( s y(0) + y'(0) \right) - 5s Y(s) + y(0) - 6 Y(s) = \frac{1}{s-3} \\
Y(s) \{ s^2 - 5s - 6\} = \frac{1}{s-3} + 2s - 9 \\
Y(s) = \frac{2s^2 - 15s +27}{(s-3) (s+1) (s-6)} \\
\textrm{On Partial Fraction Decomposition}\\
\frac{A}{s-3} + \frac{B}{s+1} + \frac{C}{s-6} = \frac{2s^2 -15s +27}{(s-3) (s+1) (s-6)} \\
A (s+1)(s-6) + B(s-3)(s-6) + C (s-3)(s+1) = 2s^2 -15s +27 \\
\textrm{putting s =6} \\
21C = 9 \implies C = \frac{3}{7} \\
\textrm{similarly,} \\
s = -1 ~\text{gives}~ B = 11/7 \\
s = 3 ~ \text{gives} ~ A = 0\\
\textrm{Thus,}~~ y_p = 11/7 L^{-1} [1/(s+1)] + 3/7 L^{-1} [1/(s-6)] \\
y_p = 11/7 e^{-x} + 3/7 e^{6x}
\end{align*}
$$

But this doesn't match with the answer given in the book. Where is my mistake?
I find the method of characteristic to be straightforward ...i.e

Let

##m^2-5m-6=0##

##m_1=-1## ##m_2=6## therefore,

##y = Ae^{-x} + Be^{6x}## on applying boundary condition; ##y(0)=2## we shall have

##2=A+B##
and on applying the second boundary condition; ##y^{'}(0)=1## we shall have

##1=-A+6B##

solving the simultaneous equation;

##2=A+B##
##1=-A+6B##

yields;

##A=\dfrac{11}{7}## and ##B=\dfrac{3}{7}## therefore our complementary solution is;

##y_c(x) =\dfrac{11}{7} e^{-x} + \dfrac{3}{7} e^{6x}## now on the inhomogenous part;

Let ##y_p(x)= Ce^{3x}##

##y^{'}_p(x)= 3Ce^{3x}##

##y^{''}_p(x)= 9Ce^{3x}## therefore;

##9Ce^{3x}-15Ce^{3x}-6Ce^{3x}= e^{3x}##

##-12Ce^{3x}=e^{3x}##

##C=-\dfrac{1}{12}##

Therefore ##y(x)= y_c(x) + y_p(x)= \dfrac{11}{7} e^{-x} + \dfrac{3}{7} e^{6x}-\dfrac{1}{12}e^{3x}##
 
  • Like
Likes   Reactions: Hall
Hall said:
Homework Statement:: Nil
Relevant Equations:: Nil

We have to solve
$$
\begin{align*}
y'' - 5y' - 6y = e^{3x} \\
y(0) = 2,~~ y'(0) = 1 \\
\end{align*}
$$
Applying Laplace Transform the equation
$$
\begin{align*}
L [ y''] - 5 L[y'] - 6 L[y] = L [ e^{3x} ] \\
s^2 Y(s) - \left( s y(0) + y'(0) \right) - 5s Y(s) + y(0) - 6 Y(s) = \frac{1}{s-3} \\
Y(s) \{ s^2 - 5s - 6\} = \frac{1}{s-3} + 2s - 9 \\
Y(s) = \frac{2s^2 - 15s +27}{(s-3) (s+1) (s-6)} \\
\textrm{On Partial Fraction Decomposition}\\
\frac{A}{s-3} + \frac{B}{s+1} + \frac{C}{s-6} = \frac{2s^2 -15s +27}{(s-3) (s+1) (s-6)} \\
A (s+1)(s-6) + B(s-3)(s-6) + C (s-3)(s+1) = 2s^2 -15s +27 \\
\textrm{putting s =6} \\
21C = 9 \implies C = \frac{3}{7} \\
\textrm{similarly,} \\
s = -1 ~\text{gives}~ B = 11/7 \\
s = 3 ~ \text{gives} ~ A = 0\\
\textrm{Thus,}~~ y_p = 11/7 L^{-1} [1/(s+1)] + 3/7 L^{-1} [1/(s-6)] \\
y_p = 11/7 e^{-x} + 3/7 e^{6x}
\end{align*}
$$

But this doesn't match with the answer given in the book. Where is my mistake?
Where is your solution for the inhomogenous part?...your answer does not look complete to me! just check if my solution is correct. Cheers.
 
Hall said:
Homework Statement:: Nil
Relevant Equations:: Nil

We have to solve
$$
\begin{align*}
y'' - 5y' - 6y = e^{3x} \\
y(0) = 2,~~ y'(0) = 1 \\
\end{align*}
$$
Applying Laplace Transform the equation
$$
\begin{align*}
L [ y''] - 5 L[y'] - 6 L[y] = L [ e^{3x} ] \\
s^2 Y(s) - \left( s y(0) + y'(0) \right) - 5s Y(s) + y(0) - 6 Y(s) = \frac{1}{s-3} \\
Y(s) \{ s^2 - 5s - 6\} = \frac{1}{s-3} + 2s - 9 \\
Y(s) = \frac{2s^2 - 15s +27}{(s-3) (s+1) (s-6)} \\
\textrm{On Partial Fraction Decomposition}\\
\frac{A}{s-3} + \frac{B}{s+1} + \frac{C}{s-6} = \frac{2s^2 -15s +27}{(s-3) (s+1) (s-6)} \\
A (s+1)(s-6) + B(s-3)(s-6) + C (s-3)(s+1) = 2s^2 -15s +27 \\
\textrm{putting s =6} \\
21C = 9 \implies C = \frac{3}{7} \\
\textrm{similarly,} \\
s = -1 ~\text{gives}~ B = 11/7 \\
s = 3 ~ \text{gives} ~ A = 0\\
\textrm{Thus,}~~ y_p = 11/7 L^{-1} [1/(s+1)] + 3/7 L^{-1} [1/(s-6)] \\
y_p = 11/7 e^{-x} + 3/7 e^{6x}
\end{align*}
$$

But this doesn't match with the answer given in the book. Where is my mistake?
Taking the Laplace transform of ##5y’## you have transformed this to ##5sY(s) - y(0)##…
 
chwala said:
Where is your solution for the inhomogenous part?...your answer does not look complete to me! just check if my solution is correct. Cheers.
The Laplace transform gets both the homogeneous and inhomogeneous parts since it solves the differential equation including the initial conditions.

Yes, you can use the characteristic equation, but the OP specifically asked about the Laplace transform method.
 
  • Like
Likes   Reactions: Mark44 and chwala

Similar threads

  • · Replies 8 ·
Replies
8
Views
1K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
9
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
2
Views
2K