Some weird circular relationship

In summary, the mathematician is trying to find a way to model a circular rotating system in which the time it takes to turn an amount of angular velocity is dependent on the angular velocity. The equation is coupled with another equation which states that the time it takes to turn an amount of angular velocity is equal to the period of a square wave signal with an on-time of 1 and an off-time of 2.
  • #1
Runei
193
17
Hello there!

I'm currently doing some mathematical modelling at my work, and I have arrived at an interesting kind of circular relationship integral - and now I'm wondering about what to do.

The integral looks very innocent at first glance:
$$ \theta_s = \int\limits_0^{t_1} \omega (t) dt$$
So, it's a circular rotating body, with some time-dependent angular velocity. However, the ##\theta_s## is a constant - a parameter we can design in the system.

But what makes the thing complex (at least in my head) is that ##t_1## is the time it takes for the body to rotate the amount ##\theta_s## - so the upper limit becomes dependent on the angular velocity also.

Can I create another integral that relates the time ##t_1## to ##\omega (t)## and ##\theta_s##?
Is Leibniz' rule the way to go?

And ##\omega (t)## is an unknown function, by the way.
 
Physics news on Phys.org
  • #2
You can consider it more abstractly. You have an arbitrary function y=f(x), and you want to find the value of x2 such that the area under the curve from x=x1 to x2 is a given value. Doesn't sound like there's any way to cast that than the form of integral you quote.
 
  • #3
We can't uniquely determine ##\omega(t)## neither ##t_1## just by this integral equation, need more equations to uniquely determine them.

For example if you try ##\omega(t)=at+b## you ''ll find a ##t_1## that depends on a,b and ##\theta_s## (##at_1^2+2bt_1-2\theta_s+c=0##), if you try ##\omega(t)=sin(at)## you 'll find a totally different ##t_1=\frac{1}{a}arcos(a\theta_s+1)##.
 
Last edited:
  • #4
Delta² said:
We can't uniquely determine ##\omega(t)## neither ##t_1## just by this integral equation, need more equations to uniquely determine them.
I don't think that is what Runei was trying to do. Rather, he was looking to turn the equation into the form ##t_1=F(\omega, \theta_s)##, where F is some functional, maybe an integral.
 
  • #5
Thanks for the replies! The equation is coupled with another equation namely
$$ \int\limits_0^{t_1}\tau_1(t)\omega(t)dt+\int\limits_0^{t_2}\tau_2(t)\omega(t)dt+\int\limits_0^{t_1}\tau_{in}\omega(t)dt = 0 $$
The ##\tau_1(t)## and ##\tau_2(t)## are controllable functions - they can be chosen by design (EDIT: And they will have the opposite sign of ##\tau_{in}##). The function ##\tau_{in}## is a square wave signal (perhaps modulating another signal - but that is of lesser importance right now) with an on-time of ##t_1## and an off-time of ##t_2##. And as mentioned earlier, the ##t_1## is precisely the time it takes the system to turn an amount ##\theta_s##.

$$ \theta_s = \int\limits_0^{t_1}\omega(t) dt $$

What I am basically trying to do is modelling the system in steady-state, where I know that the input torque will be a square wave, with duty cycle determined by the angular velocity as mentioned above.

I've been considering using a trapezoidal expansion of the integrals and solving the equations numerically, but I was wondering if they could be "massaged" even more.

Thanks again for the replies! :-)
 
  • #6
I might be wrong but seems to me again that we can't determine uniquely ##\omega(t)##. Can choose "quite a random " ##\omega(t)## and then just solve for ##t_1## and ##t_2##. For example if we put ##\omega(t)=C## we see how everything is simplified and easy to determine ##t_1## and ##t_2## so that the two integral equations hold. But I might be wrong.

I think perhaps a third equation , even one not directly involving ##\omega(t)## but some equation like ##t_1+t_2=C## will narrow down our choices for ##\omega(t)##.
 
  • #7
Well there are actually some more now that I think about it.
One thing I realized is that the integral with ##t_2## should probably have a lower bound being ##t_1## instead.
##\int\limits_0^{t_1}\tau_1(t)\omega(t)dt+\int\limits_0^{t_1}\tau_{in}(t)\omega(t)dt+\int\limits_{t_1}^{t_2}\tau_2(t)\omega(t)dt = 0##
##\theta_s = \int\limits_0^{t_1}\omega(t) dt##
The function ##\tau_{in}## will have a period ##T_{in}## and that period will be equal to ##t_2##. Furthermore, the function ##\tau_{in}## has it's duty cycle ##D## which means that
##t_1 = D\cdot T_{in}##

But there's more I see. The ##\omega(t)## is at any time related to the torque ##\tau_{net}## and moment of inertia ##I##, which means that we have in the period ##[0;t_1]##:
##\dot\omega(t)\cdot I = \tau_{net} = \tau_{in} + \tau_{1}##
And in the time period ##[t_1;t_2]##
##\dot\omega(t)\cdot I = \tau_{net} = \tau_{2}##

So I guess the integrals above could be rewritten as
##\int\limits_0^{t_1}\dot\omega(t)\omega(t) dt+\int\limits_{t_1}^{t_2}\dot\omega(t)\omega(t) dt = 0##
The moment of inertia can be removed since it's constant and can be multiplied out.
 
  • #8
Runei said:
Well there are actually some more now that I think about it.
One thing I realized is that the integral with ##t_2## should probably have a lower bound being ##t_1## instead.
##\int\limits_0^{t_1}\tau_1(t)\omega(t)dt+\int\limits_0^{t_1}\tau_{in}(t)\omega(t)dt+\int\limits_{t_1}^{t_2}\tau_2(t)\omega(t)dt = 0##
##\theta_s = \int\limits_0^{t_1}\omega(t) dt##
The function ##\tau_{in}## will have a period ##T_{in}## and that period will be equal to ##t_2##. Furthermore, the function ##\tau_{in}## has it's duty cycle ##D## which means that
##t_1 = D\cdot T_{in}##

But there's more I see. The ##\omega(t)## is at any time related to the torque ##\tau_{net}## and moment of inertia ##I##, which means that we have in the period ##[0;t_1]##:
##\dot\omega(t)\cdot I = \tau_{net} = \tau_{in} + \tau_{1}##
And in the time period ##[t_1;t_2]##
##\dot\omega(t)\cdot I = \tau_{net} = \tau_{2}##

So I guess the integrals above could be rewritten as
##\int\limits_0^{t_1}\dot\omega(t)\omega(t) dt+\int\limits_{t_1}^{t_2}\dot\omega(t)\omega(t) dt = 0##
The moment of inertia can be removed since it's constant and can be multiplied out.
Isn't ##\int \dot\omega(t)\omega(t).dt## just ##[\omega^2(t)]/2##?
 

1. What is a circular relationship?

A circular relationship is a type of relationship where two or more variables are interconnected and influence each other in a cyclical manner. This means that each variable is both the cause and effect of the other variable, creating a continuous loop.

2. How do you identify a circular relationship?

Circular relationships can be identified by looking for patterns in the data where the variables are changing in a cyclical manner. Additionally, a correlation analysis can be conducted to determine the strength and direction of the relationship between the variables.

3. What are the implications of a circular relationship?

Circular relationships can make it difficult to determine the true cause and effect between variables, as they are constantly influencing each other. This can also make it challenging to make predictions or draw conclusions based on the data.

4. How can you break a circular relationship?

Breaking a circular relationship can be difficult, as it requires identifying and addressing the underlying factors that are causing the loop. This may involve manipulating the variables in a controlled experiment or gathering more data to better understand the relationship.

5. Can a circular relationship be beneficial?

While circular relationships can make it challenging to draw conclusions or make predictions, they can also provide valuable insights into complex systems or phenomena. By understanding the cyclical nature of the relationship, scientists can gain a deeper understanding of how different variables interact and influence each other.

Similar threads

Replies
33
Views
2K
  • Introductory Physics Homework Help
Replies
9
Views
682
Replies
5
Views
2K
Replies
13
Views
2K
  • Introductory Physics Homework Help
2
Replies
39
Views
2K
  • Calculus and Beyond Homework Help
Replies
4
Views
737
  • Introductory Physics Homework Help
Replies
16
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
2
Views
1K
  • Electrical Engineering
Replies
17
Views
1K
Replies
12
Views
2K
Back
Top