A Something about configuration manifolds in classical mechanics

wrobel
Science Advisor
Insights Author
Messages
1,157
Reaction score
994
I think it could be interesting.

Consider a mechanical system

Screenshot from 2021-02-25 09-30-39.png
A circle of mass M can rotate about the vertical axis. The angle of rotation is coordinated by the angle ##\psi##. A bead of mass m>0 can slide along this circle. The position of the bead relative the circle is given by the angle ##\theta##.

It is interesting to note that if M>0 the Lagrangian of this system is defined on the tangent bundle ##T\mathbb{T}^2##. But if M=0 then the Lagrangian is defined on the tangent bundle ##TS^2##.
 
Last edited:
Physics news on Phys.org
how is define the set ##\mathbb{T}##?
 
##\mathbb{T}^n=S^1\times\ldots\times S^1,\quad \mathbb{T}^1=S^1##
but
##S^1\times S^1\ne S^2##!
 
Last edited:
Hello! There is a simple line in the textbook. If ##S## is a manifold, an injectively immersed submanifold ##M## of ##S## is embedded if and only if ##M## is locally closed in ##S##. Recall the definition. M is locally closed if for each point ##x\in M## there open ##U\subset S## such that ##M\cap U## is closed in ##U##. Embedding to injective immesion is simple. The opposite direction is hard. Suppose I have ##N## as source manifold and ##f:N\rightarrow S## is the injective...
Back
Top