Graduate Something about configuration manifolds in classical mechanics

wrobel
Science Advisor
Insights Author
Messages
1,240
Reaction score
1,047
I think it could be interesting.

Consider a mechanical system

Screenshot from 2021-02-25 09-30-39.png
A circle of mass M can rotate about the vertical axis. The angle of rotation is coordinated by the angle ##\psi##. A bead of mass m>0 can slide along this circle. The position of the bead relative the circle is given by the angle ##\theta##.

It is interesting to note that if M>0 the Lagrangian of this system is defined on the tangent bundle ##T\mathbb{T}^2##. But if M=0 then the Lagrangian is defined on the tangent bundle ##TS^2##.
 
Last edited:
Physics news on Phys.org
how is define the set ##\mathbb{T}##?
 
##\mathbb{T}^n=S^1\times\ldots\times S^1,\quad \mathbb{T}^1=S^1##
but
##S^1\times S^1\ne S^2##!
 
Last edited:

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K