Hello : let be a differential manifold [tex]C^{\infty}[/tex] : [tex]M[/tex] of dimension n.(adsbygoogle = window.adsbygoogle || []).push({});

I choose a point p.

In this point I can defined the tangent space. It's a vectoirial space of dimension n, I'll talk about it in a precedent thread, .

This space is in bijection with the derivation space : each derivation associated a real to each fonction [tex]C^{\infty}[/tex] define on a neighbourhood of p.

Each derivator is a directionnal derivate.

I defined the tangent bundle as : [tex]TM = \cup_{p \in M} (\{p\} \times T_{p}M)[/tex]. I wanna demonstrate that this space is a differential [tex]C^{+\infty}[/tex] manifold of dimension 2n.

I beginn to define a topology on this space. Let [tex](U, \phi)[/tex] et [tex](V, \psi)[/tex] 2 charts, which are compatible [tex]C^{\infty}[/tex] and [tex]U \cap V \neq \varnothing[/tex]. I defined an open as [tex]\pi^{-1}(U) = \{ \{p\} \times T_{p}M / p \in U \}[/tex].

Like all the open define a topology which recover M, all the open I defined with my [tex]\pi^{-1}[/tex] on [tex]TM[/tex] defined a topology which recover [tex]TM[/tex].

Now I defined the same things on [tex](V, \psi)[/tex].

Now lets go back to [tex](U, \phi)[/tex] : I defined :

[tex] \Phi : \begin{pmatrix} \pi^{-1}(U) \rightarrow \phi(U) \times \mathbb{R}^{n} \subset \mathbb{R}^{2n} \\ (p, X_{p}) \rightarrow (\phi(p), d_{\phi(p)}(X_{p})) \end{pmatrix} [/tex].

I recall that [tex]d_{\phi(p)}[/tex] associated to each vectors of [tex]T_{p}M[/tex] a vectors from [tex]T_{\phi(p)}\mathbb{R}^{n}[/tex]. Like [tex]\forall x \in \mathbb{R}^{n}, T_{x}\mathbb{R}^{n} \simeq \mathbb{R}^{n}[/tex], I can identified [tex]d_{\phi(p)}(X_{p})[/tex] to an elements of [tex]\mathbb{R}^{n}[/tex]. With this natural components in the natural base.

I do the same things by defining [tex]\Psi[/tex].

And [tex](U, \phi)[/tex] et [tex](V, \psi)[/tex] are arbitrarlly choose.

So 2 question how to demonstrate that [tex]\Phi[/tex] is an homeomorphism please?

How to demosntrate that [tex]\Psi o \Phi^{-1}[/tex] is a [tex]C^{\infty}[/tex] diffeomorphisme please?

Thank you in advance and have a nice afternoon.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Bundle and differential manifold

**Physics Forums | Science Articles, Homework Help, Discussion**