Space charge region of p-n junction diode

Click For Summary
The discussion centers on whether the mass action law, np = ni^2, holds true in the space charge region of a p-n junction diode. It is noted that for an unbiased junction without net carrier recombination or generation, this relationship is valid. However, many textbooks apply the depletion approximation, which assumes no carriers exist in the depletion region, focusing solely on ionized dopant concentrations. The law of the Junction is introduced, indicating that np = ni^2e^(qVa/kT) applies throughout the space charge region, with the mass action law being valid at zero applied voltage. Overall, the presence of carriers in the depletion region challenges traditional assumptions in semiconductor theory.
rkgjet
Messages
1
Reaction score
0
does np=ni^2 holds even the space charge region of a pn junction diode?
 
Engineering news on Phys.org
For an unbiased junction with no net carrier recombination or generation I believe it does however most books use the depletion approximation where they assume there are no carriers in the space charge or depletion region and only the ionized donor and acceptor dopant concentrations matter. This graph shows the carrier concentrations to not go to zero in the depletion region.

400px-Pn-junction-equilibrium-1.png


There is something called the law of the Junction which goes as ##np=n_i^2e^{qV_a/kT}## where ##V_a## is the applied voltage. This is valid throughout the space charge region. For ##V_a=0## the mass action law ##np = n_i^2## is recovered.

https://inst.eecs.berkeley.edu/~ee130/fa13/pnjunctions.pdf
 
Last edited:
I am trying to understand how transferring electric from the powerplant to my house is more effective using high voltage. The suggested explanation that the current is equal to the power supply divided by the voltage, and hence higher voltage leads to lower current and as a result to a lower power loss on the conductives is very confusing me. I know that the current is determined by the voltage and the resistance, and not by a power capability - which defines a limit to the allowable...

Similar threads

Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
9K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K