Space charge region of p-n junction diode

AI Thread Summary
The discussion centers on whether the mass action law, np = ni^2, holds true in the space charge region of a p-n junction diode. It is noted that for an unbiased junction without net carrier recombination or generation, this relationship is valid. However, many textbooks apply the depletion approximation, which assumes no carriers exist in the depletion region, focusing solely on ionized dopant concentrations. The law of the Junction is introduced, indicating that np = ni^2e^(qVa/kT) applies throughout the space charge region, with the mass action law being valid at zero applied voltage. Overall, the presence of carriers in the depletion region challenges traditional assumptions in semiconductor theory.
rkgjet
Messages
1
Reaction score
0
does np=ni^2 holds even the space charge region of a pn junction diode?
 
Engineering news on Phys.org
For an unbiased junction with no net carrier recombination or generation I believe it does however most books use the depletion approximation where they assume there are no carriers in the space charge or depletion region and only the ionized donor and acceptor dopant concentrations matter. This graph shows the carrier concentrations to not go to zero in the depletion region.

400px-Pn-junction-equilibrium-1.png


There is something called the law of the Junction which goes as ##np=n_i^2e^{qV_a/kT}## where ##V_a## is the applied voltage. This is valid throughout the space charge region. For ##V_a=0## the mass action law ##np = n_i^2## is recovered.

https://inst.eecs.berkeley.edu/~ee130/fa13/pnjunctions.pdf
 
Last edited:
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top