Calculating Spacetime Intervals for Simultaneous Events

Click For Summary
SUMMARY

This discussion focuses on calculating spacetime intervals for simultaneous events using the invariant interval formula and Lorentz transformations. The participants confirm that for events to be simultaneous, the invariant interval must be greater than zero, indicating a spacelike separation. The calculations provided demonstrate that the velocity derived from the Lorentz transformation is v = c/2, with the spacetime coordinates for the second event being (-1, 2, 0, 0). The conversation emphasizes the importance of correctly applying the Lorentz transformation and understanding the implications of spacelike and timelike intervals.

PREREQUISITES
  • Understanding of spacetime intervals and their classifications (spacelike, timelike).
  • Familiarity with Lorentz transformations and the concept of velocity in relativity.
  • Knowledge of the invariant interval formula: $$I = -c^2 \Delta t^2 + \Delta x^2 + \Delta y^2 + \Delta z^2$$.
  • Basic grasp of four-vectors and their application in special relativity.
NEXT STEPS
  • Study the derivation and application of the Lorentz transformation equations.
  • Explore the implications of spacelike and timelike intervals in different reference frames.
  • Investigate the concept of invariant intervals in various scenarios within special relativity.
  • Learn about the consequences of exceeding the speed of light and its relation to spacetime intervals.
USEFUL FOR

Students and professionals in physics, particularly those studying special relativity, as well as educators seeking to clarify concepts related to spacetime intervals and Lorentz transformations.

milkism
Messages
118
Reaction score
15
Homework Statement
Analyse of two events with the use of invariant intervals
Relevant Equations
I= -c²t² + d²
Exercise:
7ef83cd9cbe5347d34ec1deb705a93f4.png

My solutions:
  1. For events to be simultaneous, the invariant interval must be bigger than zero (spacelike). I got $$I = -c^2 \Delta t^2 + \Delta x^2 + \Delta y^2 + \Delta z^2 = -(0-1)^2 + (0-2)^2 + (0-0)^2 + (0-0)^2 = -1 + 4 = 3 >0$$. Which is indeed greater than zero, to find the velocity, I will use the first Lorentz-transformation formula with four vectors $$\overline{x}^0 = \gamma \left( x^0 - \beta x^1 \right) = \Delta (c\overline{t}) = \gamma (\Delta (ct) - \beta (\Delta x))$$, we want $$\Delta \overline{t} = 0$$. We get: $$\Delta (ct) = \beta (\Delta x) = \frac{0-1}{0-2} = \frac{v}{c} = v = \frac{c}{2}$$. Where $$\beta = \frac{v}{c}$$.
  2. The new spacetime coordinates for second event will be (-1,2,0,0), the invariant interval doesn't change, meaning it's still spacelike, so the velocity will be the same but opposite sign.
  3. No, for two events to occur at the same point (place) the invariant interval must be negative (timelike), which isn't.
 
Physics news on Phys.org
milkism said:
We get: $$\Delta (ct) = \beta (\Delta x) = \frac{0-1}{0-2} = \frac{v}{c} = v = \frac{c}{2}$$. Where $$\beta = \frac{v}{c}$$.
So you're claiming ##\Delta (ct) = \frac{c}{2}## so ##-1 = 1.5\times 10^8~\rm m/s##? Don't use an equal sign to connect steps.

The new spacetime coordinates for second event will be (-1,2,0,0), the invariant interval doesn't change, meaning it's still spacelike, so the velocity will be the same but opposite sign.
You may want to rethink this one.
 
  • Like
Likes milkism, topsquark, MatinSAR and 1 other person
vela said:
So you're claiming ##\Delta (ct) = \frac{c}{2}## so ##-1 = 1.5\times 10^8~\rm m/s##? Don't use an equal sign to connect steps.You may want to rethink this one.
Are the spacetime coordinates wrong?
 
milkism said:
Are the spacetime coordinates wrong?
##v = \frac c 2## looks right for part (i), but your work seems very muddled to me. For example:

milkism said:
We get: $$\Delta (ct) = \beta (\Delta x) = \frac{0-1}{0-2} = \frac{v}{c} = v = \frac{c}{2}$$.
For part (ii) you need to work things out properly. You've effectively just guessed a (wrong) answer.
 
  • Like
Likes milkism, topsquark and MatinSAR
PeroK said:
##v = \frac c 2## looks right for part (i), but your work seems very muddled to me. For example:For part (ii) you need to work things out properly. You've effectively just guessed a (wrong) answer.
Well, I'm lost.
 
You know the coordinates in ##S##. Try using your answer ##\beta = -1/2## and the Lorentz transformation and see what you get for the coordinates in the other frame.
 
  • Like
Likes milkism and topsquark
milkism said:
Well, I'm lost.
This problem, IMO, is simply asking you to solve an equation for ##v##. Namely:$$\gamma(1 - 2\frac v c)= -1$$
 
Haha, I thought we had to do something with invariant intervals for (ii), thanks! Is my solution for (iii) correct?
 
milkism said:
Is my solution for (iii) correct?
Yes. Note that you can prove it in this case by showing that no allowable ##v## would solve the relevant equation.
 
  • #10
PeroK said:
Yes. Note that you can prove it in this case by showing that no allowable ##v## would solve the relevant equation.
Because it would be bigger than the speed of light?
 
  • #11
milkism said:
Because it would be bigger than the speed of light?
I don't know. Try it!
 

Similar threads

  • · Replies 28 ·
Replies
28
Views
2K
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
2
Views
939
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
605