Undergrad Special Functions: Complete Answers?

Click For Summary
The discussion centers on the completeness of answers involving special functions, particularly the gamma function, in integral evaluations. While the integral of sqrt(sin x) can be expressed in terms of the gamma function, questions arise about the completeness of this representation since the gamma function itself is an integral that may not have a known value. The conversation highlights the distinction between numerical evaluations and theoretical expressions, emphasizing that the utility of the result often depends on the context and the audience's needs. For engineers, numerical values are preferred, while mathematicians and physicists may favor expressions involving special functions for further analysis. Ultimately, the completeness of an answer is contingent on its intended application.
Mr Davis 97
Messages
1,461
Reaction score
44
I have a relatively light question about special functions. As an example, it can be shown that ##\displaystyle \int_0^{\frac{\pi}{2}} \sqrt{\sin x} ~ dx = \frac{\sqrt{\pi} ~\Gamma (\frac{3}{4})}{2 \Gamma (\frac{5}{4})}##. Generally, the expression on the right would be taken as "the answer" to this problem. My question is, to what extent is this a complete answer? Isn't the gamma function technically just another integral that we don't know the value of? And if we derive the values of gamma numerically, why don't we just numerically evaluate the original integral to begin with?
 
Physics news on Phys.org
Mr Davis 97 said:
My question is, to what extent is this a complete answer?
The same is true for results expressed in e.g. ##\log## or ##\cos##. To what extend is that a complete answer?
Isn't the gamma function technically just another integral that we don't know the value of?
And the same hols true for ##\log##. Most values can only be given numerically, so why should we look for anti-derivatives at all?

This entire question depends heavily on what you will allow as fundamental function and what not. We know a lot of values of the Gamma function and many calculation rules, too. So given a result expressed in terms of the Gamma function can be used for further treatment - usually better than the original integral. In the end it always comes down to the question: What do you want to do with the result? A numerical value is certainly better for engineers, whereas the Gamma function might be better for theoretical physicists and mathematicians.
 
  • Like
Likes Mr Davis 97

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K