- #1
W.RonG
- 48
- 0
Re-reading "On the Electrodynamics of Moving Bodies" by A. Einstein from 1905 (English translation I found on the internet). Contrary to much of what I've seen (the speed of light is the same for all observers or whatever) the 2nd postulate actually states that light is propagated in empty space with velocity c, and this velocity is independent of the state of motion of the emitter. I've been playing around with some thought experiments employing very basic emitters and receivers (observers). I have a point emitter of light "A". the wavefronts of light emanating from "A" will be a sequence of expanding spheres with "A" inside the spheres. is this concept agreeable to all? makes sense to me.
Now the question is, can "A" move away from the center of these spheres. The 2nd postulate seems to say yes, once the light energy is traveling in space its propagation is independent of anything "A" does after that particular wavefront was emitted. again, agreed?
However if I am "A", can I move toward the spheres in one direction causing in effect my own Doppler shift? I picture "A" as seeing itself always at the center of its propagating wavefront spheres. an independent observer "B" can receive light waves propagated from "A" and discern it as coming from a particular direction, that is where "A" was when that wave was emitted. "A" may have moved since then relative to "B" but the wave source direction doesn't change (see "Planetary Aberration" - the sun moves in the time it takes for the light to get here so what we really see is where it was). But does this effect define a point fixed in space where the sun was, where the present wavefront sphere is centered? I keep coming back to the idea that even SRT has, hidden within it, a point-of-view related to fixed space. in fact go back and re-read the 2nd postulate. light propagates with respect to "space", and the emitter can move with respect to "space", therefore "space" seems to be a fixed or defineable reference.
thoughts?
rg
Now the question is, can "A" move away from the center of these spheres. The 2nd postulate seems to say yes, once the light energy is traveling in space its propagation is independent of anything "A" does after that particular wavefront was emitted. again, agreed?
However if I am "A", can I move toward the spheres in one direction causing in effect my own Doppler shift? I picture "A" as seeing itself always at the center of its propagating wavefront spheres. an independent observer "B" can receive light waves propagated from "A" and discern it as coming from a particular direction, that is where "A" was when that wave was emitted. "A" may have moved since then relative to "B" but the wave source direction doesn't change (see "Planetary Aberration" - the sun moves in the time it takes for the light to get here so what we really see is where it was). But does this effect define a point fixed in space where the sun was, where the present wavefront sphere is centered? I keep coming back to the idea that even SRT has, hidden within it, a point-of-view related to fixed space. in fact go back and re-read the 2nd postulate. light propagates with respect to "space", and the emitter can move with respect to "space", therefore "space" seems to be a fixed or defineable reference.
thoughts?
rg
Last edited: