I Special Relativity: 3 Objects, Momentum & Time Dilation

learning
Messages
16
Reaction score
0
TL;DR Summary
Let us have an observer at rest at (0,0) in a coordinate plane. Another at (1,0) moving away from the first observer at 5 m/s in the x direction as seen by observer 1 and another object at (1,1) moving away from observer 2 at 0.5C in the y direction as seen by observer 2. Should observer 1 see observer 2 moving in the x direction faster than observer 3.
Let us have an observer at rest at (0,0) in a coordinate plane. Another at (1,0) moving away from the first observer at 5 m/s in the x direction as seen by observer 1 and another object at (1,1) moving away from observer 2 at 0.5C in the y direction as seen by observer 2. Should observer 1 see observer 2 moving in the x direction faster than observer 3?

The confusion I have is because if an object has more mass at higher velocities would it slow down in directions where it is not moving relativistically because of conservation of momentum or time dilation or something?
 
Physics news on Phys.org
learning said:
Summary:: Let us have an observer at rest at (0,0) in a coordinate plane. Another at (1,0) moving away from the first observer at 5 m/s in the x direction as seen by observer 1 and another object at (1,1) moving away from observer 2 at 0.5C in the y direction as seen by observer 2. Should observer 1 see observer 2 moving in the x direction faster than observer 3.

Let us have an observer at rest at (0,0) in a coordinate plane. Another at (1,0) moving away from the first observer at 5 m/s in the x direction as seen by observer 1 and another object at (1,1) moving away from observer 2 at 0.5C in the y direction as seen by observer 2. Should observer 1 see observer 2 moving in the x direction faster than observer 3?
They will have the same x-component of velocity, but different y-components. You can use the velocity transformation rule. Here we have the second frame moving to the right at some speed ##v##. And in that frame, the velocity of the third object is ##u'_x = 0, u'_y = 0.5c##.

When we transform the velocity of this object to the first frame we get: $$u_x = \frac{u'_x + v}{1 + vu'_x/c^2} = v$$ And both objects 2 and 3 have ##v## as the x-component of their velocity, as measured in the first frame.

learning said:
The confusion I have is because if an object has more mass at higher velocities would it slow down in directions where it is not moving relativistically because of conservation of momentum or time dilation or something?
This makes no sense. Generally, relativistic mass is a red herring and not used any more.

Conservation of momentum means "the same momentum over time". Momentum varies between reference frames, as it must: you can be at rest in one frame but not in another.
 
  • Like
Likes vanhees71, Dale and Ibix
PS The y-component of the velocity transforms according to: $$u_y = \frac{u'_y}{\gamma(1 + vu'_x/c^2)} = \frac{u'_y}{\gamma} < u'_y$$
 
@learning positions you said as (0,0)or (1,1) does not matter.
May I interpret your question as :

No. 2 observes No.1 is moving x direction with v1, you say -5 m/s.
No. 1 observes No. 2 is moving x direction with -v1, you say 5m/s.
No. 2 observes No.3 is moving y direction with v3, you say 0.5 c =1.5E8 m/s.
No. 3 observes No.2 is moving y direction with -v3, you say -0.5 c =-1.5E8 m/s.
Question: How fast does No.1 observe No.3 moves ?
 
PeroK said:
They will have the same x-component of velocity, but different y-components. You can use the velocity transformation rule. Here we have the second frame moving to the right at some speed ##v##. And in that frame, the velocity of the third object is ##u'_x = 0, u'_y = 0.5c##.

When we transform the velocity of this object to the first frame we get: $$u_x = \frac{u'_x + v}{1 + vu'_x/c^2} = v$$ And both objects 2 and 3 have ##v## as the x-component of their velocity, as measured in the first frame.This makes no sense. Generally, relativistic mass is a red herring and not used any more.

Conservation of momentum means "the same momentum over time". Momentum varies between reference frames, as it must: you can be at rest in one frame but not in another.
Thank you this clears things up.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Back
Top