Special Relativity: 3 Objects, Momentum & Time Dilation

Click For Summary

Discussion Overview

The discussion revolves around the relativistic effects on momentum and time dilation as perceived by different observers in a coordinate plane. Participants explore how velocities transform between frames and the implications of relativistic mass on these transformations.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant describes a scenario with three observers and questions whether observer 1 sees observer 2 moving faster than observer 3 in the x direction.
  • Another participant suggests using the velocity transformation rule to analyze the situation, noting that both observer 2 and observer 3 have the same x-component of velocity as measured in observer 1's frame.
  • There is a discussion about the concept of relativistic mass, with one participant stating that it is not commonly used anymore and suggesting that conservation of momentum varies between reference frames.
  • One participant provides a formula for transforming the y-component of velocity, indicating that it is affected by the Lorentz factor.
  • A later reply seeks clarification on the relative velocities observed by different observers, reiterating the confusion regarding the direction and speed of the objects involved.

Areas of Agreement / Disagreement

Participants express differing views on the relevance of relativistic mass and the implications of momentum conservation across frames. The discussion remains unresolved regarding the interpretation of the velocities observed by the different observers.

Contextual Notes

Some assumptions about the reference frames and the nature of relativistic effects are not explicitly stated, which may affect the clarity of the discussion. The dependence on definitions of mass and momentum in relativistic contexts is also noted but not fully explored.

learning
Messages
16
Reaction score
0
TL;DR
Let us have an observer at rest at (0,0) in a coordinate plane. Another at (1,0) moving away from the first observer at 5 m/s in the x direction as seen by observer 1 and another object at (1,1) moving away from observer 2 at 0.5C in the y direction as seen by observer 2. Should observer 1 see observer 2 moving in the x direction faster than observer 3.
Let us have an observer at rest at (0,0) in a coordinate plane. Another at (1,0) moving away from the first observer at 5 m/s in the x direction as seen by observer 1 and another object at (1,1) moving away from observer 2 at 0.5C in the y direction as seen by observer 2. Should observer 1 see observer 2 moving in the x direction faster than observer 3?

The confusion I have is because if an object has more mass at higher velocities would it slow down in directions where it is not moving relativistically because of conservation of momentum or time dilation or something?
 
Physics news on Phys.org
learning said:
Summary:: Let us have an observer at rest at (0,0) in a coordinate plane. Another at (1,0) moving away from the first observer at 5 m/s in the x direction as seen by observer 1 and another object at (1,1) moving away from observer 2 at 0.5C in the y direction as seen by observer 2. Should observer 1 see observer 2 moving in the x direction faster than observer 3.

Let us have an observer at rest at (0,0) in a coordinate plane. Another at (1,0) moving away from the first observer at 5 m/s in the x direction as seen by observer 1 and another object at (1,1) moving away from observer 2 at 0.5C in the y direction as seen by observer 2. Should observer 1 see observer 2 moving in the x direction faster than observer 3?
They will have the same x-component of velocity, but different y-components. You can use the velocity transformation rule. Here we have the second frame moving to the right at some speed ##v##. And in that frame, the velocity of the third object is ##u'_x = 0, u'_y = 0.5c##.

When we transform the velocity of this object to the first frame we get: $$u_x = \frac{u'_x + v}{1 + vu'_x/c^2} = v$$ And both objects 2 and 3 have ##v## as the x-component of their velocity, as measured in the first frame.

learning said:
The confusion I have is because if an object has more mass at higher velocities would it slow down in directions where it is not moving relativistically because of conservation of momentum or time dilation or something?
This makes no sense. Generally, relativistic mass is a red herring and not used any more.

Conservation of momentum means "the same momentum over time". Momentum varies between reference frames, as it must: you can be at rest in one frame but not in another.
 
  • Like
Likes   Reactions: vanhees71, Dale and Ibix
PS The y-component of the velocity transforms according to: $$u_y = \frac{u'_y}{\gamma(1 + vu'_x/c^2)} = \frac{u'_y}{\gamma} < u'_y$$
 
@learning positions you said as (0,0)or (1,1) does not matter.
May I interpret your question as :

No. 2 observes No.1 is moving x direction with v1, you say -5 m/s.
No. 1 observes No. 2 is moving x direction with -v1, you say 5m/s.
No. 2 observes No.3 is moving y direction with v3, you say 0.5 c =1.5E8 m/s.
No. 3 observes No.2 is moving y direction with -v3, you say -0.5 c =-1.5E8 m/s.
Question: How fast does No.1 observe No.3 moves ?
 
  • Like
Likes   Reactions: robwilson
PeroK said:
They will have the same x-component of velocity, but different y-components. You can use the velocity transformation rule. Here we have the second frame moving to the right at some speed ##v##. And in that frame, the velocity of the third object is ##u'_x = 0, u'_y = 0.5c##.

When we transform the velocity of this object to the first frame we get: $$u_x = \frac{u'_x + v}{1 + vu'_x/c^2} = v$$ And both objects 2 and 3 have ##v## as the x-component of their velocity, as measured in the first frame.This makes no sense. Generally, relativistic mass is a red herring and not used any more.

Conservation of momentum means "the same momentum over time". Momentum varies between reference frames, as it must: you can be at rest in one frame but not in another.
Thank you this clears things up.
 

Similar threads

  • · Replies 32 ·
2
Replies
32
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 11 ·
Replies
11
Views
900
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 26 ·
Replies
26
Views
4K
  • · Replies 35 ·
2
Replies
35
Views
4K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K