Undergrad Special Relativity: 3 Objects, Momentum & Time Dilation

Click For Summary
The discussion centers on the relative motion of three observers in a coordinate plane, focusing on how observer 1 perceives the velocities of observers 2 and 3. Observer 1 sees observer 2 moving at 5 m/s in the x direction, while observer 3 moves at 0.5C in the y direction relative to observer 2. The velocity transformation rules indicate that both observers 2 and 3 have the same x-component of velocity from observer 1's perspective. The concept of relativistic mass is deemed irrelevant, emphasizing that momentum varies between reference frames. The conversation concludes with a clarification on how these transformations help understand the relative speeds observed by different observers.
learning
Messages
16
Reaction score
0
TL;DR
Let us have an observer at rest at (0,0) in a coordinate plane. Another at (1,0) moving away from the first observer at 5 m/s in the x direction as seen by observer 1 and another object at (1,1) moving away from observer 2 at 0.5C in the y direction as seen by observer 2. Should observer 1 see observer 2 moving in the x direction faster than observer 3.
Let us have an observer at rest at (0,0) in a coordinate plane. Another at (1,0) moving away from the first observer at 5 m/s in the x direction as seen by observer 1 and another object at (1,1) moving away from observer 2 at 0.5C in the y direction as seen by observer 2. Should observer 1 see observer 2 moving in the x direction faster than observer 3?

The confusion I have is because if an object has more mass at higher velocities would it slow down in directions where it is not moving relativistically because of conservation of momentum or time dilation or something?
 
Physics news on Phys.org
learning said:
Summary:: Let us have an observer at rest at (0,0) in a coordinate plane. Another at (1,0) moving away from the first observer at 5 m/s in the x direction as seen by observer 1 and another object at (1,1) moving away from observer 2 at 0.5C in the y direction as seen by observer 2. Should observer 1 see observer 2 moving in the x direction faster than observer 3.

Let us have an observer at rest at (0,0) in a coordinate plane. Another at (1,0) moving away from the first observer at 5 m/s in the x direction as seen by observer 1 and another object at (1,1) moving away from observer 2 at 0.5C in the y direction as seen by observer 2. Should observer 1 see observer 2 moving in the x direction faster than observer 3?
They will have the same x-component of velocity, but different y-components. You can use the velocity transformation rule. Here we have the second frame moving to the right at some speed ##v##. And in that frame, the velocity of the third object is ##u'_x = 0, u'_y = 0.5c##.

When we transform the velocity of this object to the first frame we get: $$u_x = \frac{u'_x + v}{1 + vu'_x/c^2} = v$$ And both objects 2 and 3 have ##v## as the x-component of their velocity, as measured in the first frame.

learning said:
The confusion I have is because if an object has more mass at higher velocities would it slow down in directions where it is not moving relativistically because of conservation of momentum or time dilation or something?
This makes no sense. Generally, relativistic mass is a red herring and not used any more.

Conservation of momentum means "the same momentum over time". Momentum varies between reference frames, as it must: you can be at rest in one frame but not in another.
 
  • Like
Likes vanhees71, Dale and Ibix
PS The y-component of the velocity transforms according to: $$u_y = \frac{u'_y}{\gamma(1 + vu'_x/c^2)} = \frac{u'_y}{\gamma} < u'_y$$
 
@learning positions you said as (0,0)or (1,1) does not matter.
May I interpret your question as :

No. 2 observes No.1 is moving x direction with v1, you say -5 m/s.
No. 1 observes No. 2 is moving x direction with -v1, you say 5m/s.
No. 2 observes No.3 is moving y direction with v3, you say 0.5 c =1.5E8 m/s.
No. 3 observes No.2 is moving y direction with -v3, you say -0.5 c =-1.5E8 m/s.
Question: How fast does No.1 observe No.3 moves ?
 
PeroK said:
They will have the same x-component of velocity, but different y-components. You can use the velocity transformation rule. Here we have the second frame moving to the right at some speed ##v##. And in that frame, the velocity of the third object is ##u'_x = 0, u'_y = 0.5c##.

When we transform the velocity of this object to the first frame we get: $$u_x = \frac{u'_x + v}{1 + vu'_x/c^2} = v$$ And both objects 2 and 3 have ##v## as the x-component of their velocity, as measured in the first frame.This makes no sense. Generally, relativistic mass is a red herring and not used any more.

Conservation of momentum means "the same momentum over time". Momentum varies between reference frames, as it must: you can be at rest in one frame but not in another.
Thank you this clears things up.
 
MOVING CLOCKS In this section, we show that clocks moving at high speeds run slowly. We construct a clock, called a light clock, using a stick of proper lenght ##L_0##, and two mirrors. The two mirrors face each other, and a pulse of light bounces back and forth betweem them. Each time the light pulse strikes one of the mirrors, say the lower mirror, the clock is said to tick. Between successive ticks the light pulse travels a distance ##2L_0## in the proper reference of frame of the clock...

Similar threads

  • · Replies 32 ·
2
Replies
32
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 9 ·
Replies
9
Views
833
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 26 ·
Replies
26
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K