Spectral decomposition of 4x4 matrix

Click For Summary
SUMMARY

The discussion centers on the spectral decomposition of a 4x4 matrix A, specifically defined as A = \(\begin{pmatrix} -4 & -3 & 3 & 3 \\ -3 & -4 & 3 & 3 \\ -6 & -3 & 5 & 3 \\ -3 & -6 & 3 & 5 \end{pmatrix}\). The eigenvalues identified are \(\lambda_1 = 2\) and \(\lambda_2 = -1\), with corresponding eigenvectors forming the basis \(e' = e_1' \cup e_2'\). The matrix representation of the transformation \(T_A\) in the standard basis was incorrectly computed, leading to confusion about the application of spectral decomposition. The correct approach involves using the Jordan Normal Form and the projection matrices derived from the eigenvectors.

PREREQUISITES
  • Understanding of eigenvalues and eigenvectors
  • Familiarity with spectral decomposition and diagonalization
  • Knowledge of Jordan Normal Form and projection matrices
  • Proficiency in linear algebra concepts and matrix operations
NEXT STEPS
  • Study the properties of diagonalizable matrices and their spectral decomposition
  • Learn about Jordan Normal Form and its applications in linear algebra
  • Explore projection matrices and their role in eigenspace decomposition
  • Practice solving spectral decomposition problems with various matrices
USEFUL FOR

Mathematicians, students of linear algebra, and anyone involved in advanced matrix theory or applications requiring spectral analysis.

CGandC
Messages
326
Reaction score
34
Homework Statement
Let ## A = \pmatrix{ -4 & -3 & 3 & 3 \\ -3 & -4 & 3 & 3 \\ -6 & -3 & 5 & 3 \\ -3 & -6 & 3 & 5 } ## over ## \mathbb{R}##.
Write ## A ## in the form ## A = \lambda_2 P_1 + \lambda_1 P_2 ## where ## P_1 , P_2 ## are projections and ## \lambda_i ## are eigenvalues .
Relevant Equations
Spectral decomposition theorem says that if ## T ## is a normal transformation in a finitely generated unitary space ## V ## ( or a self-adjoint linear transformation in a real or complex vector space defined with inner-product ) and let ## \lambda_1 ,..., \lambda_k ## be all the different eigenvalues of ## T ## and let ## V_{\lambda_i} ## be the corresponding eigen-space for eigenvalue ## \lambda_i ##, then denote ## P_i ## as the orthogonal projection transformation on ## V_{\lambda_i} ##. Then:
## T = \lambda_1 P_1 + ... + \lambda_k P_k ##

A linear transformation ## T ## is normal iff ## TT^* = T^* T ##
## A = \pmatrix{ -4 & -3 & 3 & 3 \\ -3 & -4 & 3 & 3 \\ -6 & -3 & 5 & 3 \\ -3 & -6 & 3 & 5 } ## over ## \mathbb{R}##.
Let ## T_A: \mathbb{R}^4 \to \mathbb{R}^4 ## be defined as ## T_A v = Av ##. Thus, ## T_A ## represents ## A ## in the standard basis, meaning ## [ T_A]_{e} = A ##.
I've found the matrix's eigenvalues to be ## \lambda_1 = 2, \lambda_2 = -1 ## , whose eigenvectors are in the sets ## e_1' = \{ v_1 = \pmatrix{1 \\1 \\ 0 \\ 3} , v_2 = \pmatrix{1 \\1 \\ 3 \\ 0} \} ##, ## e_2' = \{ v_3 = \pmatrix{0 \\1 \\ 0 \\ 1} , v_4 = \pmatrix{1 \\0 \\ 1 \\ 0} \} ##, accordingly.
Denote the basis of eigenvectors as ## e' = e_1' \cup e_2' ##.

## [ T_A]_{e ~'} = \pmatrix{ 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1} = S^{-1}AS ## where ## S = \pmatrix{1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 3 & 0 & 1 \\ 3 & 0 & 1 & 0 }##.

By the spectral decomposition theorem ## T_A ## is normal ( since it is diagonalizable ), hence
## T_A = \lambda_2 E_2 + \lambda_1 E_1 = -E_2 + 2E_1 ## where ## E_1, E_2 ## are projections on the eigenspace of ## \lambda_1 = 2 , \lambda_2 = -1 ## accordingly.
Note that ## [ E_1]_{e ~'} = \pmatrix{1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0}## , ## [ E_2]_{e ~'} = \pmatrix{0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1}##.

And that ## [ E_1]_{e ~} = S^{-1} [ E_1]_{e ~'} S = \pmatrix{-1 & -1 & -\frac{2}{3} & -\frac{1}{3} \\ -1 & -1 & -\frac{1}{3} & -\frac{2}{3} \\ 3 & 3 & 2 & 1 \\ 3 & 3 & 1 & 2}## , ## [ E_2]_{e ~} = S^{-1} [ E_2]_{e ~'} S = \pmatrix{2 & 1 & \frac{2}{3} & \frac{1}{3} \\ 1 & 2 & \frac{1}{3} & \frac{2}{3} \\ -3 & -3 & -1 & -1 \\ -3 & -3 & -1 & -1}##.

So ## [T_A]_{e} = \lambda_2[ E_1]_{e ~} + \lambda_1 [ E_1]_{e ~} = -[ E_2]_{e ~} + 2[ E_1]_{e ~} = 2[ E_1]_{e ~} - [ E_2]_{e ~} = ## ## \pmatrix{-4 & -3 & -2 & -1 \\ -3 & -4 & -1 & -2 \\ 9 & 9 & 5 & 3 \\ 9 & 9 & 3 & 5} ##

The problem is, I should have got that ## [ T_A]_{e} = A ##, but Instead I got something else, do you know why? I can't figure it out and it seems like I didn't make any mistakes, maybe it has to do with me using spectral decomposition in a wrong fashion?
 
Physics news on Phys.org
You have \lambda_1 \operatorname{diag}(1,1,0,0) + \lambda_2\operatorname{diag}(0,0,1,1) = <br /> \Lambda = S^{-1}AS = \lambda_1S^{-1}P_1S + \lambda_2S^{-1}P_2S where \Lambda = \operatorname{diag}(\lambda_1,\lambda_1,\lambda_2,\lambda_2) is the Jordan Normal Form of A. It follows that P_1 = S \operatorname{diag}(1,1,0,0)S^{-1} etc, which is not what you have calculated.
 
  • Like
Likes   Reactions: CGandC
I've got it now, thank you very much!
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
9
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
Replies
4
Views
2K