Spectral decomposition of 4x4 matrix

Click For Summary
The discussion focuses on the spectral decomposition of a 4x4 matrix A, where the eigenvalues are found to be λ1 = 2 and λ2 = -1, with corresponding eigenvectors forming a basis. The transformation T_A is defined, and its representation in the standard basis is compared to the spectral decomposition results. The calculations reveal discrepancies, as the derived matrix from the spectral decomposition does not match the original matrix A. The issue is identified as a potential misuse of the spectral decomposition theorem, leading to confusion in the projection matrices. The participants clarify the correct application of the theorem, resolving the misunderstanding.
CGandC
Messages
326
Reaction score
34
Homework Statement
Let ## A = \pmatrix{ -4 & -3 & 3 & 3 \\ -3 & -4 & 3 & 3 \\ -6 & -3 & 5 & 3 \\ -3 & -6 & 3 & 5 } ## over ## \mathbb{R}##.
Write ## A ## in the form ## A = \lambda_2 P_1 + \lambda_1 P_2 ## where ## P_1 , P_2 ## are projections and ## \lambda_i ## are eigenvalues .
Relevant Equations
Spectral decomposition theorem says that if ## T ## is a normal transformation in a finitely generated unitary space ## V ## ( or a self-adjoint linear transformation in a real or complex vector space defined with inner-product ) and let ## \lambda_1 ,..., \lambda_k ## be all the different eigenvalues of ## T ## and let ## V_{\lambda_i} ## be the corresponding eigen-space for eigenvalue ## \lambda_i ##, then denote ## P_i ## as the orthogonal projection transformation on ## V_{\lambda_i} ##. Then:
## T = \lambda_1 P_1 + ... + \lambda_k P_k ##

A linear transformation ## T ## is normal iff ## TT^* = T^* T ##
## A = \pmatrix{ -4 & -3 & 3 & 3 \\ -3 & -4 & 3 & 3 \\ -6 & -3 & 5 & 3 \\ -3 & -6 & 3 & 5 } ## over ## \mathbb{R}##.
Let ## T_A: \mathbb{R}^4 \to \mathbb{R}^4 ## be defined as ## T_A v = Av ##. Thus, ## T_A ## represents ## A ## in the standard basis, meaning ## [ T_A]_{e} = A ##.
I've found the matrix's eigenvalues to be ## \lambda_1 = 2, \lambda_2 = -1 ## , whose eigenvectors are in the sets ## e_1' = \{ v_1 = \pmatrix{1 \\1 \\ 0 \\ 3} , v_2 = \pmatrix{1 \\1 \\ 3 \\ 0} \} ##, ## e_2' = \{ v_3 = \pmatrix{0 \\1 \\ 0 \\ 1} , v_4 = \pmatrix{1 \\0 \\ 1 \\ 0} \} ##, accordingly.
Denote the basis of eigenvectors as ## e' = e_1' \cup e_2' ##.

## [ T_A]_{e ~'} = \pmatrix{ 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1} = S^{-1}AS ## where ## S = \pmatrix{1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 3 & 0 & 1 \\ 3 & 0 & 1 & 0 }##.

By the spectral decomposition theorem ## T_A ## is normal ( since it is diagonalizable ), hence
## T_A = \lambda_2 E_2 + \lambda_1 E_1 = -E_2 + 2E_1 ## where ## E_1, E_2 ## are projections on the eigenspace of ## \lambda_1 = 2 , \lambda_2 = -1 ## accordingly.
Note that ## [ E_1]_{e ~'} = \pmatrix{1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0}## , ## [ E_2]_{e ~'} = \pmatrix{0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1}##.

And that ## [ E_1]_{e ~} = S^{-1} [ E_1]_{e ~'} S = \pmatrix{-1 & -1 & -\frac{2}{3} & -\frac{1}{3} \\ -1 & -1 & -\frac{1}{3} & -\frac{2}{3} \\ 3 & 3 & 2 & 1 \\ 3 & 3 & 1 & 2}## , ## [ E_2]_{e ~} = S^{-1} [ E_2]_{e ~'} S = \pmatrix{2 & 1 & \frac{2}{3} & \frac{1}{3} \\ 1 & 2 & \frac{1}{3} & \frac{2}{3} \\ -3 & -3 & -1 & -1 \\ -3 & -3 & -1 & -1}##.

So ## [T_A]_{e} = \lambda_2[ E_1]_{e ~} + \lambda_1 [ E_1]_{e ~} = -[ E_2]_{e ~} + 2[ E_1]_{e ~} = 2[ E_1]_{e ~} - [ E_2]_{e ~} = ## ## \pmatrix{-4 & -3 & -2 & -1 \\ -3 & -4 & -1 & -2 \\ 9 & 9 & 5 & 3 \\ 9 & 9 & 3 & 5} ##

The problem is, I should have got that ## [ T_A]_{e} = A ##, but Instead I got something else, do you know why? I can't figure it out and it seems like I didn't make any mistakes, maybe it has to do with me using spectral decomposition in a wrong fashion?
 
Physics news on Phys.org
You have \lambda_1 \operatorname{diag}(1,1,0,0) + \lambda_2\operatorname{diag}(0,0,1,1) = <br /> \Lambda = S^{-1}AS = \lambda_1S^{-1}P_1S + \lambda_2S^{-1}P_2S where \Lambda = \operatorname{diag}(\lambda_1,\lambda_1,\lambda_2,\lambda_2) is the Jordan Normal Form of A. It follows that P_1 = S \operatorname{diag}(1,1,0,0)S^{-1} etc, which is not what you have calculated.
 
I've got it now, thank you very much!
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
9
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
1K
Replies
4
Views
2K