- #1
Sir_Pogo
- 12
- 0
Can i get some help on this problem?
A conducting bar of length L = 25.6 cm and mass M = 35.0 g lies across a pair of conducting rails. The contact friction between the bar and the rails is negligible, but there is a resistor at one end with a value R = 45.0 Ohms. Initially the rod is given an initial speed of v0 = 41.0 meters per second. There is a uniform magnetic field perpendicular to the plane containing the rod and rails of magnitude B = 1.4 T.
What is the speed of the rod at time t = 23.297 s?
How far does the rod slide before coming to rest?
Thanks in advance.
A conducting bar of length L = 25.6 cm and mass M = 35.0 g lies across a pair of conducting rails. The contact friction between the bar and the rails is negligible, but there is a resistor at one end with a value R = 45.0 Ohms. Initially the rod is given an initial speed of v0 = 41.0 meters per second. There is a uniform magnetic field perpendicular to the plane containing the rod and rails of magnitude B = 1.4 T.
What is the speed of the rod at time t = 23.297 s?
How far does the rod slide before coming to rest?
Thanks in advance.