Speed of sound from resonant length of tube vs tuning fork wavelengths

In summary: I agree, I am just waiting for the prof to get back to me. I agree that if we did do a graph of frequency of turning fork vs wavelength of sound measured from the tube then the area under the graph of would...
  • #1
ChiralSuperfields
1,206
132
Homework Statement
I am trying to find the speed of sound given that gradient of resonant length of the tube (for the fundamental) vs tuning fork wavelength
Relevant Equations
Theoretically ##L_{res}= λ/4##

However, for the graph ##L_{res} =0.2381λ##
The graph is,
1678649898621.png

I do not understand why how it is possible to find the speed of sound from the gradient for this graph. Can someone please help?

Many thanks!
 
Physics news on Phys.org
  • #2
Callumnc1 said:
Homework Statement:: I am trying to find the speed of sound given that gradient of resonant length of the tube (for the fundamental) vs tuning fork wavelength
Relevant Equations:: Theoretically ##L_{res}= λ/4##

However, for the graph ##L_{res} =0.2381λ##

The graph is,
View attachment 323524
I do not understand why how it is possible to find the speed of sound from the gradient for this graph. Can someone please help?

Many thanks!
How do you know the tuning fork wavelength? The mechanics of a fork determine its frequency.
 
  • Like
Likes ChiralSuperfields
  • #3
haruspex said:
How do you know the tuning fork wavelength? The mechanics of a fork determine its frequency.
Thank you for your reply @haruspex!

We calculated found it by dividing the speed of sound (343 m/s) by the frequency read on each turning fork. But for some reason we are meant to graph resonant length of the tube vs tuning fork wavelength instead of resonant length vs 1/4f.

Many thanks!
 
  • #4
Callumnc1 said:
We calculated found it by dividing the speed of sound (343 m/s) by the frequency read on each turning fork.
Why would you do that if the object of the exercise is to determine the speed of sound?
 
  • Like
Likes ChiralSuperfields
  • #5
haruspex said:
Why would you do that if the object of the exercise is to determine the speed of sound?
Thank you for your reply @haruspex!

I have no idea. It does not make sense to me. But that is what we were meant to do.

Many thanks!
 
  • #6
Callumnc1 said:
Thank you for your reply @haruspex!

I have no idea. It does not make sense to me. But that is what we were meant to do.

Many thanks!
I feel sure you have misunderstood. Were you given the task in writing or verbally? If in writing, can you post it? If verbally, are there any other students you can confirm it with?
 
  • Like
Likes ChiralSuperfields
  • #7
haruspex said:
I feel sure you have misunderstood. Were you given the task in writing or verbally? If in writing, can you post it? If verbally, are there any other students you can confirm it with?
Thanks your for your reply @haruspex! I will just find it.
 
  • #8
Callumnc1 said:
Thanks your for your reply @haruspex! I will just find it.
I saw your posted extract, then it vanished. But I saw enough to explain as one misunderstanding on your part and one typo.

You were not supposed to use the speed of sound to find the wavelength of the tuning fork. Indeed, a tuning fork does not have a specific wavelength. What it has is a frequency, and the resulting wavelength depends on the speed of sound in the air, which can vary from day to day.
You were supposed to deduce the wavelength produced by the tuning fork from the resonant length of the tube.

The typo is that it should have said to plot the frequency against the wavelength.
 
  • Like
Likes ChiralSuperfields
  • #9
haruspex said:
I saw your posted extract, then it vanished. But I saw enough to explain as one misunderstanding on your part and one typo.

You were not supposed to use the speed of sound to find the wavelength of the tuning fork. Indeed, a tuning does not have a specific wave. What it has is a frequency, and the resulting wavelength depends on the speed of sound in the air, which can vary from day to day.
You were supposed to deduce the wavelength prod by the tuning fork from the resonant length of the tube.

The typo is that it should have said to plot the frequency against the wavelength.
Thank you for your reply @haruspex!

Sorry, the extract have be found in post #9.

Many thanks!
 
  • #10
My group did actually do a graph of resonant length vs frequency

1678656780063.png

This gives the correct gradient to find the speed of sound. However, that is not the specific question in bold at the bottom of post #9.

Many thanks!
 
  • #11
haruspex said:
I saw your posted extract, then it vanished. But I saw enough to explain as one misunderstanding on your part and one typo.

You were not supposed to use the speed of sound to find the wavelength of the tuning fork. Indeed, a tuning fork does not have a specific wavelength. What it has is a frequency, and the resulting wavelength depends on the speed of sound in the air, which can vary from day to day.
You were supposed to deduce the wavelength produced by the tuning fork from the resonant length of the tube.

The typo is that it should have said to plot the frequency against the wavelength.
Thank you for your reply @haruspex!

I agree, I am just waiting for the prof to get back to me. I agree that if we did do a graph of frequency of turning fork vs wavelength of sound measured from the tube then the area under the graph of would be equal to the speed of sound.

Many thanks!
 
Last edited:
  • #12
Callumnc1 said:
if we did do a graph of frequency of turning fork vs wavelength of sound measured from the tube then the area under the graph of would be equal to the speed of sound.
Umm, no it wouldn’t. The product of x and y at each point would be an estimate of the speed of sound.
I should have written that the graph has to be the inverse of one against the other, e.g. 1/f against λ.
 
  • Like
Likes ChiralSuperfields
  • #13
Callumnc1 said:
My group did actually do a graph of resonant length vs frequency

View attachment 323537
This gives the correct gradient to find the speed of sound. However, that is not the specific question in bold at the bottom of post #9.

Many thanks!
I'm guessing that is 1/(4f), not (1/4)f.
 
  • Like
Likes ChiralSuperfields
  • #14
haruspex said:
Umm, no it wouldn’t. The product of x and y at each point would be an estimate of the speed of sound.
I should have written that the graph has to be the inverse of one against the other, e.g. 1/f against λ.
Thank you for your reply @haruspex!

Why would the product of f and λ be an estimate? I'm guessing it is because the area under the f and λ would have to be approximated by using rectangles and triangles. But actually, we could integrate to find the area?

I guess we could have 1 as the inverse of the other as you mention.

Many thanks!
 
  • #15
Callumnc1 said:
Why would the product of f and λ be an estimate?
Because ##v=fλ##.
If you integrate ##\int f.d\lambda=\int\frac v{\lambda}.d\lambda=v\ln(\frac{\lambda_f}{\lambda_i})##.
 
  • Like
Likes ChiralSuperfields
  • #16
haruspex said:
Because ##v=fλ##.
If you integrate ##\int f.d\lambda=\int\frac v{\lambda}.d\lambda=v\ln(\frac{\lambda_f}{\lambda_i})##.
Thank you for your reply @haruspex!

Thats integral it not an estimate is it? By the way you were correct!! It should be resonant length of tube against inverse frequency (1/f).

Many thanks!
 
  • #17
haruspex said:
I'm guessing that is 1/(4f), not (1/4)f.
Yes, thank you @haruspex!
 

1. What is the relationship between the speed of sound and the resonant length of a tube?

The speed of sound is directly proportional to the resonant length of a tube. This means that as the resonant length increases, the speed of sound also increases. This relationship is known as the inverse relationship.

2. How does the tuning fork wavelength affect the speed of sound in a tube?

The tuning fork wavelength has an indirect effect on the speed of sound in a tube. As the wavelength of the tuning fork increases, the frequency decreases. This decrease in frequency causes a decrease in the speed of sound in the tube.

3. Can the speed of sound be accurately measured using the resonant length of a tube and tuning fork wavelengths?

Yes, the speed of sound can be accurately measured using the resonant length of a tube and tuning fork wavelengths. This method is commonly used in physics experiments and has been found to be quite reliable.

4. What factors can affect the accuracy of the speed of sound measurement using this method?

There are several factors that can affect the accuracy of the speed of sound measurement using the resonant length of a tube and tuning fork wavelengths. These include the temperature and humidity of the surrounding environment, the quality of the tuning fork, and any external noise or vibrations.

5. Are there any real-world applications for understanding the speed of sound from resonant length of tube vs tuning fork wavelengths?

Yes, understanding the relationship between the speed of sound and resonant length of a tube is important in various fields such as acoustics, music, and engineering. It can be used to design and optimize musical instruments, determine the speed of sound in different materials, and even help in the development of new technologies.

Similar threads

  • Introductory Physics Homework Help
Replies
5
Views
1K
  • Introductory Physics Homework Help
Replies
4
Views
2K
Replies
10
Views
2K
  • Introductory Physics Homework Help
Replies
9
Views
3K
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
15
Views
7K
  • Introductory Physics Homework Help
Replies
4
Views
2K
  • Introductory Physics Homework Help
Replies
12
Views
3K
  • Introductory Physics Homework Help
Replies
4
Views
6K
  • Introductory Physics Homework Help
Replies
10
Views
538
Back
Top