Mr.Amin
- 28
- 0
Alll right, I sent e-mails to the previous gent/lady "azzkika".
First, let's use what we know about the physical universe.
1) No signal can be sent at any rate exceeding that of light traversing a vacuum.
2) As you build "speed" (I hate that term), MASS is NOT generated.
3) Gravitational field curve space, they do not slow light trajectories.
4) Mass distributions (i.e. glass, dust, water) transparent to light slow light BECAUSE their electrons interact witht the light. Remember you lessons on polarization and complex susceptibility.
SO
1) Even if you could say get in front of an electromagnetic signal, what use is it since the you have not intercepted the signal. Causality still holds. Superluminal signals have nothing to do with "time travel" unless you are speaking of going forwards.
2) E=mc^2 does not mean that MASS increases when kinetic energy increases. The equation is fully written with a relativistic gamma multiplying the rest mass, m_0. It is the momentum that you are fighting to go faster. The change in momentum is what skyrockets. This is why it takes so much energy to go from 0.99c to 0.999c. Therefore, even if you could get a Ferrari traveling near c, you would not get a black hole. See Schutz's book or Misner Thorne and Wheeler's book. This interpretation took a little longer to understand.
3) Light always travels along null trajectories. This means that electromagnetic waves irrespective of wavelength (power line through hard gamma) travel the SAME route in a vacuum. For those of you who would ask about refractive effects, remember refraction requires charges to be present.
4) This is suitable for another thread or is nicely explained in "Modern Optics" by Fowles.
It is also in Jackson, for those daring enough.
First, let's use what we know about the physical universe.
1) No signal can be sent at any rate exceeding that of light traversing a vacuum.
2) As you build "speed" (I hate that term), MASS is NOT generated.
3) Gravitational field curve space, they do not slow light trajectories.
4) Mass distributions (i.e. glass, dust, water) transparent to light slow light BECAUSE their electrons interact witht the light. Remember you lessons on polarization and complex susceptibility.
SO
1) Even if you could say get in front of an electromagnetic signal, what use is it since the you have not intercepted the signal. Causality still holds. Superluminal signals have nothing to do with "time travel" unless you are speaking of going forwards.
2) E=mc^2 does not mean that MASS increases when kinetic energy increases. The equation is fully written with a relativistic gamma multiplying the rest mass, m_0. It is the momentum that you are fighting to go faster. The change in momentum is what skyrockets. This is why it takes so much energy to go from 0.99c to 0.999c. Therefore, even if you could get a Ferrari traveling near c, you would not get a black hole. See Schutz's book or Misner Thorne and Wheeler's book. This interpretation took a little longer to understand.
3) Light always travels along null trajectories. This means that electromagnetic waves irrespective of wavelength (power line through hard gamma) travel the SAME route in a vacuum. For those of you who would ask about refractive effects, remember refraction requires charges to be present.
4) This is suitable for another thread or is nicely explained in "Modern Optics" by Fowles.
It is also in Jackson, for those daring enough.