Use spherical coordinates to draw the cone z=Sqrt[x^2+y^2].(adsbygoogle = window.adsbygoogle || []).push({});

Hint: You will need to determine \[Phi].

How would I go about finding phi?

Below are the x y and z components, but I cannot figure out how to find the range of phi:

z^2=x^2 + y^2

(Rho)=sqrt(2x^2+2y^2)

x = sqrt(2x^2+2y^2) sin [Phi] cos [Theta]

y = sqrt(2x^2+2y^2) sin [Phi] sin [Theta]

z = sqrt(2x^2+2y^2) cos [Phi]

Mathematica Code:

ParametricPlot3D[{sqrt(2x^2+2y^2) Sin[[Phi]]*Cos[[Theta]],

sqrt(2x^2+2y^2)Sin[[Phi]] Sin[[Theta]], sqrt(2x^2+2y^2) Cos[[Phi]]}, {[Phi], 0,

Pi}, {[Theta], 0, 2*Pi}, ViewPoint -> {6, 3, 2}]

Any help would be appreciated.

Thanks

Stephen

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Spherical Coordinates and Mathematica

Loading...

Similar Threads - Spherical Coordinates Mathematica | Date |
---|---|

Dirac-delta function in spherical polar coordinates | Oct 7, 2017 |

Usage of Del in Spherical Polar Coordinates | Nov 7, 2015 |

Divergence of curl in spherical coordinates | Apr 27, 2014 |

Vector calculus: angular momentum operator in spherical coordinates | Feb 23, 2014 |

Jacobian in spherical coordinates? | Aug 24, 2013 |

**Physics Forums - The Fusion of Science and Community**