Spherical pendulum confusion [Issue resolved]

AI Thread Summary
The discussion clarifies the meaning of the angle ##\phi## in the context of a spherical pendulum. It confirms that the x and y axes are indeed perpendicular, despite initial confusion from the diagram. The angle ##\phi## represents the azimuthal angle around the z-axis, defined as the angle between a line from the origin to a point in the horizontal x-y plane and the x-axis. This is consistent with standard spherical coordinates where the radius is constant. The explanation resolves the confusion regarding the diagram's representation.
member 731016
Homework Statement
Please see below.
Relevant Equations
##F_g = mg##
For this problem,

I am confused my what they mean by ##\phi##. I have looked at the figure, but it is confusing. Makes it look like the x-axis and y-axis are not perpendicular, even thought I'm assuming they are since this is a right handed coordinate system. Does someone please know what ##\phi## is in the diagram?

I propose a better diagram:


Any help greatly appreciated - Thanks!
 
Last edited by a moderator:
Physics news on Phys.org
ChiralSuperfields said:
I am confused my what they mean by ##\phi##. I have looked at the figure, but it is confusing. Makes it look like the x-axis and y-axis are not perpendicular, even thought I'm assuming they are since this is a right handed coordinate system. Does someone please know what ##\phi## is in the diagram?
Yes, the x and y axes are perpendicular.

Imagine the position of the bob projected vertically upward to a point P in the horizontal x-y plane. The line from the origin through P is shown dotted in the diagram. ##\phi## is the angle between this line and the x-axis. ##\phi## is the "azimuthal" angle around the z-axis.
 
  • Love
Likes member 731016
This is just standard spherical coordinates with r = constant “l”.
 
  • Love
Likes member 731016
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...

Similar threads

Replies
7
Views
729
Replies
4
Views
940
Replies
9
Views
2K
Replies
11
Views
2K
Replies
1
Views
2K
Replies
4
Views
962
Back
Top