Spherical pendulum confusion [Issue resolved]

AI Thread Summary
The discussion clarifies the meaning of the angle ##\phi## in the context of a spherical pendulum. It confirms that the x and y axes are indeed perpendicular, despite initial confusion from the diagram. The angle ##\phi## represents the azimuthal angle around the z-axis, defined as the angle between a line from the origin to a point in the horizontal x-y plane and the x-axis. This is consistent with standard spherical coordinates where the radius is constant. The explanation resolves the confusion regarding the diagram's representation.
member 731016
Homework Statement
Please see below.
Relevant Equations
##F_g = mg##
For this problem,

I am confused my what they mean by ##\phi##. I have looked at the figure, but it is confusing. Makes it look like the x-axis and y-axis are not perpendicular, even thought I'm assuming they are since this is a right handed coordinate system. Does someone please know what ##\phi## is in the diagram?

I propose a better diagram:


Any help greatly appreciated - Thanks!
 
Last edited by a moderator:
Physics news on Phys.org
ChiralSuperfields said:
I am confused my what they mean by ##\phi##. I have looked at the figure, but it is confusing. Makes it look like the x-axis and y-axis are not perpendicular, even thought I'm assuming they are since this is a right handed coordinate system. Does someone please know what ##\phi## is in the diagram?
Yes, the x and y axes are perpendicular.

Imagine the position of the bob projected vertically upward to a point P in the horizontal x-y plane. The line from the origin through P is shown dotted in the diagram. ##\phi## is the angle between this line and the x-axis. ##\phi## is the "azimuthal" angle around the z-axis.
 
  • Love
Likes member 731016
This is just standard spherical coordinates with r = constant “l”.
 
  • Love
Likes member 731016
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...

Similar threads

Replies
7
Views
700
Replies
4
Views
918
Replies
9
Views
2K
Replies
11
Views
2K
Replies
1
Views
2K
Replies
4
Views
935
Back
Top