Graduate Spin-One Klein Gordon Equation

Click For Summary
The spin-one Klein-Gordon equation is represented as $(\square - m^2)A^\mu=0$, which describes fields with definite mass. This equation is related to the Proca equation, which is given by $(\square - m^2)A^\mu = \partial^\mu \partial^\nu A_\nu$. The Proca equation incorporates an additional condition, $\partial_\nu A^\nu=0$, to account for the constraints on the vector field. The Klein-Gordon equation serves as the quantum mechanical foundation for fields with mass, aligning with the relation $p^2 + m^2 = 0$. Understanding these equations is crucial for studying spin-one fields in quantum field theory.
Jogging-Joe
Messages
4
Reaction score
1
TL;DR
The spin zero Klein Gordon equation is commonly discussed. How about the spin one Klein Gordon Equation?
What is the spin one Klein Gordon Equation? What is the formula for the conserved current, i.e. the electric current density four-vector?
 
Physics news on Phys.org
I don't know what do you understand by the spin-one KG equation...
But the KG equation is just ##(\square - m^2)\phi=0##.
So I would say that the KG equation for spin-one is just $$(\square - m^2)A^\mu=0$$
 
  • Like
Likes Demystifier
Gaussian97 said:
I don't know what do you understand by the spin-one KG equation...
But the KG equation is just ##(\square - m^2)\phi=0##.
So I would say that the KG equation for spin-one is just $$(\square - m^2)A^\mu=0$$
Yes, and it's called Proca equation.
 
Well, technically the Proca equation is ##(\square - m^2)A^\mu = \partial^\mu \partial^\nu A_\nu##.
Klein-Gordon equation should (as far as I know), be fulfilled by any field with definite mass, since it's the quantum version of ##p^2 + m^2 = 0##.
To obtain the Proca equation you need the extra condition ##\partial_\nu A^\nu=0##.
 
  • Like
Likes Demystifier
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 45 ·
2
Replies
45
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 23 ·
Replies
23
Views
2K