(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

(This problem is from the Spivak 2nd Ed. I had to translate it from spanish since my book is in spanish)

If [tex]x_1, \ldots, x_n[/tex] are different numbers, find a polynomial function [tex]f_i[/tex] of [tex]n-1[/tex] degree that takes value 1 on [tex]x_i[/tex] and 0 in [tex]x_j[/tex] for [tex]j \neq i[/tex]. Indication: the product of every [tex](x-x_j)[/tex] for [tex]j \neq i[/tex] is 0 if [tex]j \neq i[/tex].

\prod_{j=1}^{n} (x-x_{j})

2. Relevant equations

[tex]\prod_{j=1}^{n} (x-x_{j})[/tex]

3. The attempt at a solution

So far... Well so basically I stated all the known and unknown but I can't seem to get

past that. So here's what I have...

There is a set of [tex]x_1, \ldots, x_n[/tex]

[tex]f_{i}[/tex] is of [tex]n-1[/tex] degree.

There's a function such

[tex]f_{i}(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \ldots + a_{1}x + a_{0}[/tex]

There's a pair [tex](x_{i}, f_{i}(x_{i})[/tex] such that

[tex]f_{i}(x_{i}) = a_{n-1}x_{i}^{n-1} + a_{n-2}x_{i}^{n-2} + \ldots + a_{1}x_{i} + a_{0} = 1[/tex]

And there's also a pair [tex](x_{j}, f_{i}(x_{j}))[/tex] such that

[tex]f_{i}(x_{j}) = a_{n-1}x_{j}^{n-1} + a_{n-2}x_{j}^{n-2} + \ldots + a_{1}x_{j} +a_{0} = 0[/tex]

But I can't seem to connect the indication with the whole problem... any help? Oh, and I posted it in calculus but I am not quiet sure if this belongs in precalculus forum instead. I am sorry if this doesn't belong here.

Thanks for any advice in advance.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Spivak's Calculus polynomial question

**Physics Forums | Science Articles, Homework Help, Discussion**