Spring and its shear, torsion, tensile stresses...

AI Thread Summary
The discussion explores the mechanics of springs, particularly how they utilize shear, torsion, and tensile stresses to function effectively. It highlights that applying a tensile force to a spring not only elongates it but also induces torsional and shear stresses within the wire. The process of making springs involves coiling wire and prestressing it to maintain its shape, allowing for energy storage and release. Additionally, the conversation references specific resources for further understanding spring design and stress mechanics. Overall, the interaction emphasizes the complexity and utility of springs in engineering applications.
fog37
Messages
1,566
Reaction score
108
TL;DR Summary
Spring and its shear, torsion, tensile stresses...
Hello Forum,

After watching a video on how some insects can achieve amazing accelerations (hundreds of gs) by using their bodies like springs (instead of just using muscle generated forces to propel themselves), I started thinking about springs again and wanted to check some concepts and intuition with you.

Let's consider a simple linear spring of larger diameter ##D## and smaller wire diameter ##d##. By pulling the string's end, we apply a longitudinal tensile force ##F# which elongates the string (see figure below).
As a simplistic reminder, stress=force, strain=deformation, torsion stress is about changing the cross-sections mutual's angles, shear stress is about shifting the cross-sections of a beam/wire/member parallel to each other.

The figure below shows the spring being pulled and completely untwisted (which means that it means that it originally was in a twisted state). And to untwist something, a torsional stress must be applied!

View attachment 336565

This also means that the longitudinal force ##F## elongates the spring by causing the wire to (un)twist, i.e. there is a torsional stress that does that. The torsional stress, implicitly, causes a shear stress which is is internal to the wire and not directly visible (we can have shear without torsion). In very raw terms, the force ##F## gets "translated" into twist and shear stresses.

Is my understanding correct?

How is a spring made? A spring is created by first turning the wire into a coiled shape and freezing it into that shape (prestressing process) so that is permanently stays in that shape (same ideas a prestressed concrete). What is the benefit of a spring? Obviously, springs compress/stretch linearly storing and releasing potential energy...We would not be able to do that with a simple straight piece of wire not into the shape of spring. The clever shaping of a wire and freezing it into that stressed condition (like when we cure an epoxy by analogy) allows us to use the fact that is can be reversed in shape (compressed/decompressed) to store energy.

Thank YOU!
 
Engineering news on Phys.org
A coil spring can be made by winding wire on a mandrel. The wire is bent far enough that it plastically deforms, and then stays bent, although with some springback. The spring in the photo below was made that way:
Spring.jpg

This particular spring was my first attempt at making a replacement spring for a mechanical seal in a trash pump. High speed production spring making machines use a slightly different method, but the results are the same. Straight wire is bent into the spring shape. Small springs are bent cold, while very large springs may be made by hot bending and heat treating.

The primary stress state from using a helical spring in its elastic range is torsion. The best source to learn about spring design and stresses is the SMI Handbook of Spring Design: https://smihq.org/store/viewproduct.aspx?id=8525988. This book is 100 pages of spring goodness, and is highly readable. Strongly recommended.

And it you REALLY want to understand stresses and energy storage in springs, the book is Mechanical Springs by A.M. Wahl: https://smihq.org/store/viewproduct.aspx?id=8088306. This book is not available from Amazon.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
Carburetor CFM A Holley Carb rated at 500 cfm 2 barrel carb has venturi diameter of 1.3/8". There are 2 barrel carbs with 600 cfm and have 1.45 diameter venturi. Looking at the area the 1.378 bore has 5.9 sq. Inch area. The 1.45 dia. has 6.6 sq. inch. 5.9 - 6.6 = 0.70 sq. inch difference. Keeping the 500 cfm carb in place, if I can introduce 0.7 sq inch more area in the intake manifold, will I have the same potential horsepower as a 600 cfm carb provide? Assume I can change jetting to...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Back
Top