Say I randomly give each edge of a square a direction and then I identify opposite edges, do I always come up with a two-dimensional compact manifold without boundary? Seems there are eight different edge orientation assignments, many being equivalent? How many different spaces?(adsbygoogle = window.adsbygoogle || []).push({});

Can I do the same with a cube? Give each edge of a cube a random orientation and identify opposing faces? Will we always be able to identify opposite faces with random edge orientation assignments? Can we say anything about such spaces, are any three-dimensional compact manifolds without boundary ?

Thanks for any help!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Square with edges, cube with faces identified.

**Physics Forums | Science Articles, Homework Help, Discussion**