entropy1 said:
But if I do calculations with IRF where A is stationary and B is moving, I should get the opposite answer if I use the IRF where B is stationary and A is moving, while both are (can be) the exact same situation, right? In the first case A is older and in the second case B is older.
In order for A and B to meet up again (so that they can directly compare clocks), one or the other has to have changed velocity. Let's say it's B.
As far as A is concerned, B travels away at some speed, turns around and returns at that same speed. All A needs to know to work out how much time passes for B is what speed B was traveling and for how long. (the fact that B spent some time slowing down and then speeding up again in the reverse direction will have some small effect on the total time, but as far as A is concerned, the rate at which B's clock ticks only depends on B's relative speed with respect to A at any given moment. In other words, other than the change in B's speed, the acceleration B is undergoing adds no additional effect).
For B, the above applies during the two legs of his trip. When he and A are separating at a constant speed or approaching at a constant speed, he would measure A's clock running slow at a rate dependent on their relative speed.*
Where B's observations differ from A's is during that period when B is reversing direction and thus changing his own velocity. This is when B is non-inertial. And measurements made from non-inertial frames are not as simple as those made from inertial ones.
During this period, it is not enough for B to know the relative speed between A and himself to determine how fast A's clock is ticking. He also has to factor in the distance to A and how he is accelerating with respect to A.
By transitioning from going away from A to approaching A, he is accelerating towards A, And this causes him to determine that A's clock runs fast by a factor that depends on the magnitude of the acceleration and the distance between A and himself. In other words, B's acceleration
does effect how B measures A's clock.
The result is the B would measure A's clock running slow on the outbound trip, running very fast during B's turn-around phase, and then runs slow during the return leg. The end result after returning to A is that more time has accumulated on A's clock than B's clock.
So, while during different points of the trip, A and B will disagree as to what their respect clocks are doing at any moment, when they meet up again, they agree as to how much time has accumulated on each of their clocks.
* And by "measure", I mean what they would determine after accounting to light propagation delay.