MHB Stabilizer subgroups - proof verification

kalish1
Messages
79
Reaction score
0
I have a problem that I would like help on. I'm preparing for an exam, and I have provided my work below.

**Problem statement:** Let $G$ act on $X$, and suppose $x,y\in X$ are in the same orbit for this action. How are the stabilizer subgroups $G_x$ and $G_y$ related?

**My attempt:** $G_x = G_y = \{g \in G: gx=x\} = \{g \in G: gy=y\} \forall x,y \in X, \forall g \in G$.

Thanks.
 
Physics news on Phys.org
kalish said:
I have a problem that I would like help on. I'm preparing for an exam, and I have provided my work below.

**Problem statement:** Let $G$ act on $X$, and suppose $x,y\in X$ are in the same orbit for this action. How are the stabilizer subgroups $G_x$ and $G_y$ related?

**My attempt:** $G_x = G_y = \{g \in G: gx=x\} = \{g \in G: gy=y\} \forall x,y \in X, \forall g \in G$.
If $x$ and $y$ are in the same orbit then $y=hx$ for some $h\in G.$ Use that information to express the definition of $G_y$ in terms of $x$ rather than $y$. Then see how that compares with the definition of $G_x$.
 
Opalg's post hints at, but does not explicitly state an important fact about group actions:

If $y = hx$, then $x = h^{-1}y$.

To avoid "symbol-overloading" let's use the following notation:

$G_x = \{g \in G: gx = x\}$

$G_y = \{g' \in G: g'y = y\}$.

What can we say about the relationship of $g'$ to $g$? We can start with the most trivial of observations:

$y = y$.

That is:

$y = g'y$ (for $g' \in G_y$).

Since we are given that $y = hx$ for some $h \in G$, we have:

$hx = y = g'y$

Now for $g \in G_x$, we certainly have:

$x = gx$.

Thus $y = hx = h(gx) = (hg)x$.

Hence $(hgh^{-1})y = (hg)(h^{-1}y) = (hg)(x) = h(gx) = hx = y$.

This shows that $hgh^{-1} \in G_y$, that is: $hG_xh^{-1} \subseteq G_y$.

Can you show the other inclusion (you may find it easier to show that $h^{-1}G_yh \subseteq G_x$)?
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
374
  • · Replies 26 ·
Replies
26
Views
687
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K