State-Space (SS) Formulation for Equations of Motion

Click For Summary
SUMMARY

The discussion focuses on the formulation of equations of motion in State-Space (SS) representation for a mechanical system involving variables such as angular position and linear displacement. The equations are rewritten in the form \(\dot{x} = Ax + Bu\) and \(\theta_b = Cx + Du\), where \(u = v_m\) and \(y = \theta_b\). Key parameters include \(\alpha\) and \(\beta\), defined as \(\alpha = \frac{1}{\frac{J_w}{l_w} + l_w m_b + l_w m_w}\) and \(\beta = \frac{1}{l_b + m_b l_b^2}\). The final state-space representation is derived, showcasing the relationships between the system's state variables and inputs.

PREREQUISITES
  • Understanding of State-Space representation in control systems
  • Familiarity with mechanical dynamics and equations of motion
  • Knowledge of linear algebra, particularly matrix operations
  • Basic concepts of control theory, including input-output relationships
NEXT STEPS
  • Study the derivation of State-Space models in control systems
  • Explore the application of the MATLAB Control System Toolbox for simulating SS models
  • Learn about stability analysis techniques for State-Space systems
  • Investigate the role of feedback in enhancing system performance in control applications
USEFUL FOR

Students and professionals in mechanical engineering, control system engineers, and anyone involved in modeling dynamic systems using State-Space techniques.

Linder88
Messages
25
Reaction score
0

Homework Statement


The task is to write the following equations of motion as in equation (2) considering the inputs and outputs as in equation (3)
\begin{equation}
\begin{cases}
(I_b+m_bl_b^2)\ddot{\theta}_b=m_bl_bg\theta_b-m_bl_b\ddot{x}_w-\frac{K_t}{R_m}v_m+\bigg(\frac{K_eK_t}{R_m}+b_f\bigg)\bigg(\frac{\dot{x}_w}{l_w}-\dot{\theta}_b\bigg)\\
\bigg(\frac{J_w}{l_w}+l_wm_b+l_wm_w\bigg)\ddot{x}_w=-m_bl_bl_w\ddot{\theta}_b+\frac{K_t}{R_m}v_m-\bigg(\frac{K_eK_t}{R_M}+b_f\bigg)\bigg(\frac{\dot{x}_w}{l_w}-\dot{\theta}_b\bigg)
\end{cases}
\end{equation}

Homework Equations


Since this course is focused on control based State-Space (SS) models, we do now rewrite our EOM as
\begin{equation}
\begin{cases}
\dot{x}=Ax+Bu
Cx+Du
\end{cases}
\end{equation}
for oppurtune x, A, B, C and D. As for the input and output, assume for now
\begin{equation}
u=v_m\\
y=\theta_b
\end{equation}

The Attempt at a Solution


Equation (3) in (2)
\begin{equation}
\begin{cases}
\dot{x}=Ax+Bv_m\\
\theta_b=Cx+Dv_m
\end{cases}
\end{equation}
 
Define $\alpha$ and $\beta$ as
\begin{equation}
\begin{cases}
\alpha=\frac{1}{\frac{J_w}{l_w}+l_wm_b+l_wm_w}\\
\beta=\frac{1}{l_b+m_bl_b^2}
\end{cases}
\end{equation}
Now substitute these two expressions into Equation (1) as in
\begin{equation}
\begin{cases}
\ddot{x}_w=\alpha\bigg(-m_bl_bl_w\ddot{\theta}_b+\frac{K_t}{R_m}v_m-\bigg(\frac{K_eK_t}{R_M}+b_f\bigg)\bigg(\frac{\dot{x}_w}{l_w}-\dot{\theta}_b\bigg)\bigg)\\
\ddot{\theta}_b=\beta\bigg(m_bl_bg\theta_b-m_bl_b\ddot{x}_w-\frac{K_t}{R_m}v_m+\bigg(\frac{K_eK_t}{R_m}+b_f\bigg)\bigg(\frac{\dot{x}_w}{l_w}-\dot{\theta}_b\bigg)\bigg)
\end{cases}
\end{equation}
Expand the parentheses
\begin{equation}
\begin{cases}
\ddot{x}_w=\alpha\bigg(-m_bl_bl_w\ddot{\theta}_b+\frac{K_t}{R_m}v_m-\bigg(\frac{K_eK_t}{R_Ml_w}\dot{x}_w-\frac{K_eK_t}{R_M}\dot{\theta}_b+\frac{b_f}{l_w}\dot{x}_w-b_f\dot{\theta}_b\bigg)\bigg)\\
\ddot{\theta}_b=\beta\bigg(m_bl_bg\theta_b-m_bl_b\ddot{x}_w-\frac{K_t}{R_m}v_m+\frac{K_eK_t}{R_Ml_w}\dot{x}_w-\frac{K_eK_t}{R_M}\dot{\theta}_b+\frac{b_f}{l_w}\dot{x}_w-b_f\dot{\theta}_b\bigg)
\end{cases}
\end{equation}
Collect coefficient in front of $x_w,\dot{x}_w,\ddot{x}_w,\theta_b,\dot{\theta}_b$ and $\ddot{\theta}_b$
\begin{equation}
\begin{cases}
\ddot{x}_w=\alpha\bigg(-\bigg(\frac{K_eK_t}{R_Ml_w}+\frac{b_f}{l_w}\bigg)\dot{x}_w+\bigg(\frac{K_eK_t}{R_M}+b_f\bigg)\dot{\theta}_b-m_bl_bl_w\ddot{\theta}_b+\frac{K_t}{R_M}v_m\bigg)\\
\ddot{\theta}_b=\beta\bigg(\bigg(\frac{K_eK_t}{R_Ml_w}+\frac{b_f}{l_w}\bigg)\dot{x}_w-m_bl_b\ddot{x}_w+m_bl_bg\theta_b-\bigg(\frac{K_eK_t}{R_M}+b_f\bigg)\dot{\theta}_b-\frac{K_t}{R_M}v_m\bigg)
\end{cases}
\end{equation}
Add the variables with second order derivatives to the left hand side
\begin{equation}
\begin{cases}
\ddot{x}_w+m_bl_bl_w\ddot{\theta}_b=\alpha\bigg(-\bigg(\frac{K_eK_t}{R_Ml_w}+\frac{b_f}{l_w}\bigg)\dot{x}_w+\bigg(\frac{K_eK_t}{R_M}+b_f\bigg)\dot{\theta}_b+\frac{K_t}{R_M}v_m\bigg)\\
\ddot{\theta}_b+m_bl_b\ddot{x}_w=\beta\bigg(\bigg(\frac{K_eK_t}{R_Ml_w}+\frac{b_f}{l_w}\bigg)\dot{x}_w+m_bl_bg\theta_b-\bigg(\frac{K_eK_t}{R_M}+b_f\bigg)\dot{\theta}_b-\frac{K_t}{R_M}v_m\bigg)
\end{cases}
\end{equation}
Express in State-Space form
$$
\begin{pmatrix}
\dot{x}_w\\
\ddot{x}_w+m_bl_bl_w\ddot{\theta}_b\\
\dot{\theta}_b\\
\ddot{\theta}_b+m_bl_b\ddot{x}_w
\end{pmatrix}
=
\begin{pmatrix}
0&1&0&0\\
0&-\alpha\bigg(\frac{K_eK_t}{R_Ml_w}+\frac{b_f}{l_w}\bigg)&0&\alpha\bigg(\frac{K_eK_t}{R_M}+b_f\bigg)\\
0&0&0&1\\
0&\beta\bigg(\frac{K_eK_t}{R_Ml_w}\bigg)&\beta m_bl_bg&-\beta\bigg(\frac{K_eK_t}{R_M}+b_f\bigg)
\end{pmatrix}
\begin{pmatrix}
x_w\\
\dot{x}_w\\
\theta_b\\
\dot{\theta}_b
\end{pmatrix}
+
\begin{pmatrix}
0\\
\alpha\frac{K_t}{R_M}\\
0\\
-\beta\frac{K_t}{R_M}
\end{pmatrix}
v_m
$$
 

Similar threads

Replies
16
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K