MHB State the range of the reciprocal function?

AI Thread Summary
The range of the reciprocal function g(x) = -1/((x+3)^2 + 1) is determined to be y ≤ 0, with the maximum value approaching 0 as x approaches ±∞. The function has a horizontal asymptote at the x-axis and is symmetric about the line x = -3. To graph the function, the minimum occurs when the denominator is at its smallest, which is at the vertex of the original function f(x). The discussion confirms that the initial assessment of the range was correct. Overall, the reciprocal function exhibits specific behavior that can be accurately graphed based on these characteristics.
eleventhxhour
Messages
73
Reaction score
0
State the range of the reciprocal function of f(x) = - (x+3)^2 - 1.

I'm not sure if I did this right. I wrote that y is above/equal to -1 and below/equal to 0. Is this correct?

Also, how would you graph the reciprocal function of f(x) if there is no VA and only a HA?
 
Mathematics news on Phys.org
We could write the reciprocal function $g$ as:

$$g(x)=\frac{1}{f(x)}=-\frac{1}{(x+3)^2+1}$$

Now, to find the rage of $g$, I would write:

$$y=-\frac{1}{(x+3)^2+1}=-\frac{1}{x^2+6x+10}$$

Now, express this equation in standard form as a quadratic in $x$, and then require the discriminant to be non-negative...this will result in an inequality which gives the range of the reciprocal function. You will find that you are correct.

To graph, consider that $g$ is the graph of $$y=-\frac{1}{x^2+1}$$, shifted 3 units to the left. This function is even, meaning it is symmetric about the $y$-axis, so $g$ will be symmetric across $x=-3$. It has as its maximum value that place where the denominator is the largest (because it is a negative reciprocal), which is the end-behavior, that is where x goes to $\pm\infty$. So, we know the $x$-axis is the horizontal asymptote. It has as its minimum value the place where the denominator is the smallest, that is, where the squared term is zero.

You now have enough information to construct a reasonably accurate graph. It should look like:

View attachment 3416
 

Attachments

  • reciprocal.png
    reciprocal.png
    11.3 KB · Views: 116
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top