Steady state heat equation in a rectangle with a punkt heat source

Click For Summary
The discussion revolves around solving the steady-state heat equation in a rectangular domain with a point heat source. The original poster has attempted various methods, including separation of variables and Green's function, but has not achieved a solution. They derived a general form for the solutions using separation of variables, but are struggling to determine the constants and the separation constant due to complex boundary conditions. The boundary conditions include Dirichlet and Neumann types, which complicate the application of the methods. The poster is seeking guidance on how to proceed, particularly regarding the constants and the implications of the boundary conditions.
fluidistic
Gold Member
Messages
3,930
Reaction score
280
Homework Statement
Solve the steady state heat equation in a rectangle whose bottom surface is kept at a fixed temperature, left and right sides are insulated and top side too, except for a point in a corner where heat is generated constantly through time.
Relevant Equations
##\kappa \nabla ^2 T + g =0##
I have checked several textbooks about the heat equation in a rectangle and I have found none that deals with my exact problem. I have though to use separation of variables first (to no avail), then Green's function (to no avail), then simplifying the problem for example by defining a new function in terms of ##T(x,y)## such that it would satisfy a homogeneous problem instead, but to no avail. (is a problem even called homogeneous when ##dT/dx|_{x_0} = 0## rather than ##T(x=x_0)=0##? I guess not.)

Out of memory, when I went with separation of variables to tackle ##\kappa \left( \frac{\partial ^2 T}{\partial x^2}+ \frac{\partial ^2 T}{\partial y^2}\right) = 0##, I obtained solutions of the form ##X(x)Y(y)## with ##X(x)=A\cosh(\alpha x)+B\sinh(\alpha x)## and ##Y(y)=C\cos(\alpha y)+D\sin(\alpha y)## where ##\alpha## is the separation constant. The boundary conditions are of the type Dirichlet for the bottom surface: ##T(x,y=0)=T_0##. And Neumann elsewhere: ##\frac{\partial T}{\partial x}|_{x=0, y=0}## for ##y\in [0,b)##, ##\frac{\partial T}{\partial x}|_{x=a, y=0}## for ##y\in [0,b]## and ##\frac{\partial T}{\partial y}|_{x, y=b}## for ##x\in (0,a]##. The power generated translates as the Neumann boundary condition ##\nabla T \cdot \hat n## and so ##\frac{\partial T}{\partial x}|_{x=0, y=b}+ \frac{\partial T}{\partial y}|_{x=0, y=b}=p## where ##p## is the power density of the heat source.

I have been stuck there, I could not get to apply and know the constants ##A##, ##B##, ##C## and ##D##, nor ##\alpha##. All of these constants are in fact depending on ##n##, natural numbers, because the separable solutions are eigenfunctions, etc.

Any pointer would be appreciated. Thank you!
 
Physics news on Phys.org
I’m thinking of an array of sources and sinks.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
2
Views
1K
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K