Stern-Gerlach experiment superposition vs mixed state

Click For Summary
SUMMARY

The discussion centers on the interpretation of the Stern-Gerlach (SG) experiment, specifically the nature of the quantum states involved. It asserts that the atom's state after passing through the SG apparatus is entangled with the apparatus itself, leading to a mixed state rather than a simple superposition. The argument emphasizes that the second SG apparatus cannot restore the original spin of the atom if it is entangled with the first apparatus, challenging traditional interpretations found in literature such as the Feynman Lectures. The need for a deeper understanding of decoherence and entanglement in this context is highlighted.

PREREQUISITES
  • Quantum mechanics fundamentals
  • Understanding of superposition and mixed states
  • Familiarity with the Stern-Gerlach experiment
  • Concept of quantum entanglement
NEXT STEPS
  • Study the implications of quantum entanglement in measurement processes
  • Explore the concept of decoherence in quantum systems
  • Investigate the mathematical formalism of quantum states in the Stern-Gerlach experiment
  • Review literature on sequential Stern-Gerlach experiments and their interpretations
USEFUL FOR

Quantum physicists, students of quantum mechanics, and researchers interested in the foundations of quantum measurement and entanglement.

MichPod
Messages
231
Reaction score
46
TL;DR
Can an atom coming out of Stern-Gerlach apparatus be considered to be in a superposition state?
Considering SG experiment, it is usually described as if an atom in the end of its path (but before being detected on the screen) is in the superposition state, say, ##|\textsf{spin up}, \textsf{upper path}\rangle+|\textsf{spin down}, \textsf{lower path}\rangle##. Some books (Feynman lectures, 3rd volume) go further and claim that this superposition state may be "merged" back by another SG apparatus, restoring the original spin of the atom, particularly, if the atom entering the first apparatus (oriented in Z-direction "up") had the state |spin-left> (oriented in X direction), then the same state could be restored after the second apparatus (oriented in Z-direction "down").

The problem I see in the above description is that IMO the states of the atom leaving the SG apparatus must be entangled with the vertical shift of the magnets of the apparatus which they acquire when deflecting the atom. Therefore, the actual state of the system (a case with one apparatus) should actually be
$$|\textsf{spin up}, \textsf{upper path}\rangle\otimes|\textsf{apparatus shifted down}\rangle+$$
$$+|\textsf{spin down}, \textsf{lower path}\rangle\otimes|\textsf{apparatus shifted up}\rangle$$
and very soon, probably, this state should decohere into the mixed state of the above two addends (due to the interaction of the apparatus with the environment).
But whether there is such a decoherence, or whether we have just an entangled state of the atom and the apparatus as a result of the first SG apparatus action on the atom, there is no possibility that the second apparatus acting on the same atom alone (and not on the first apparatus) may restore its original spin. Specifically, the second apparatus could, in theory, restore the original atom state if it got the atom in the superposition state, but the atom actually is not in such a superposition as it is entangled with the first apparatus.

I vaguely remember I could have read somewhere this sort of argument (I could not google it now). That is, I am not claiming there is something new here, I'd rather ask the participants to please review this and tell whether this argument is right or whether I am missing something.
 
Last edited:
Physics news on Phys.org

Similar threads

  • · Replies 32 ·
2
Replies
32
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 43 ·
2
Replies
43
Views
4K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K