Stokes' theorem gives different results

Click For Summary
The discussion revolves around the application of Stokes' theorem to compute the surface flux of the curl of a vector field, specifically for the vector field A = (3y, -xz, yz^2) over a defined surface in R^3. The user encounters discrepancies between the surface integral of the curl and the line integral around the boundary, suspecting mistakes in their calculations. It is identified that a crucial error occurred in the change of variables, particularly in the Jacobian factor, which was not accounted for in the surface integral computation. The correct approach involves incorporating this factor to align the results from both integrals. The conversation concludes with a suggestion to verify the calculations using a different parameterization of the surface.
lriuui0x0
Messages
101
Reaction score
25
Given surface ##S## in ##\mathbb{R}^3##:

$$
z = 5-x^2-y^2, 1<z<4
$$

For a vector field ##\mathbf{A} = (3y, -xz, yz^2)##. I'm trying to calculate the surface flux of the curl of the vector field ##\int \nabla \times \mathbf{A} \cdot d\mathbf{S}##. By Stokes's theorem, this should be equal the the line integral of the vector field on the boundary of the surface. But I got different result. I'm sure I made some mistakes somewhere, but I couldn't spot.

The curl ##\nabla \times \mathbf{A}## is:

$$
\begin{aligned}
&\phantom{{}={}} \nabla \times \mathbf{A} \\
&= \begin{pmatrix}\frac{\partial yz^2}{\partial y} - \frac{\partial -xz}{\partial z} \\ \frac{\partial 3y}{\partial z} - \frac{\partial yz^2}{\partial x} \\ \frac{\partial -xz}{\partial x} - \frac{\partial 3y}{\partial y} \\ \end{pmatrix} \\
&= \begin{pmatrix}z^2 + x \\ 0 \\ -z-3\end{pmatrix} \\
&= \begin{pmatrix}r^4-10r^2+25 + r\cos\theta \\ 0 \\ r^2-8\end{pmatrix}
\end{aligned}
$$

The surface normal is:

$$
\begin{aligned}
&\phantom{{}={}} \frac{\partial}{\partial x}\begin{pmatrix}x\\y\\5-x^2-y^2\end{pmatrix} \times \frac{\partial}{\partial y}\begin{pmatrix}x\\y\\5-x^2-y^2\end{pmatrix} \\
&= \begin{pmatrix}1\\0\\-2x\end{pmatrix} \times \begin{pmatrix}0\\1\\-2y\end{pmatrix} \\
&= \begin{pmatrix}2x\\2y\\1\end{pmatrix} \\
&= \begin{pmatrix}2r\cos\theta\\2r\sin\theta\\1\end{pmatrix} \\
\end{aligned}
$$

Calculating surface integral:
$$
\begin{aligned}
&\phantom{{}={}} \int_S (\nabla \times \mathbf{A}) \cdot d\mathbf{S} \\
&= \int_0^{2\pi}d\theta \int_1^2 dr \begin{pmatrix}r^4-10r^2+25 + r\cos\theta \\ 0 \\ r^2-8\end{pmatrix} \cdot \begin{pmatrix}2r\cos\theta\\2r\sin\theta\\1\end{pmatrix} \\
&= \int_0^{2\pi}\int_1^2 2r^5\cos\theta -20r^3\cos\theta +50r\cos\theta + 2r^2\cos^2\theta + r^2- 8dr d\theta \\
&= \int_0^{2\pi}\biggl[\frac{1}{3}\cos\theta r^6 -5\cos\theta r^4 +25\cos\theta r^2 +\frac{2}{3}\cos^2\theta r^3 + \frac{1}{3}r^3 -8r\biggr]_1^2 d\theta \\
&= \int_0^{2\pi} \frac{14}{3}\cos^2\theta + 21\cos\theta - \frac{17}{3} d\theta \\
&= \int_0^{2\pi} \frac{7}{3}(1+\cos2\theta) + 21\cos\theta - \frac{17}{3} d\theta \\
&= \biggl[\frac{7}{6}\sin2\theta + 21\sin\theta -\frac{10}{3}\theta\biggr]_0^{2\pi} \\
&= -\frac{20}{3}\pi \\
\end{aligned}
$$

Yet if we calculate through the line integral:

$$
\begin{aligned}
&\phantom{{}={}} \int_{C_1} \mathbf{A} \cdot d\mathbf{C}_1 - \int_{C_2} \mathbf{A} \cdot d\mathbf{C}_2 \\
&= \int_0^{2\pi} \begin{pmatrix}6\sin\theta\\-2\cos\theta\\2\sin\theta\end{pmatrix} \cdot \frac{d}{d\theta} \begin{pmatrix}2\cos\theta\\2\sin\theta\\1\end{pmatrix} d\theta - \int_0^{2\pi} \begin{pmatrix}3\sin\theta\\-4\cos\theta\\16\sin\theta\end{pmatrix} \cdot \frac{d}{d\theta} \begin{pmatrix}\cos\theta\\\sin\theta\\4\end{pmatrix} d\theta \\
&= \int_0^{2\pi} \begin{pmatrix}6\sin\theta\\-2\cos\theta\\2\sin\theta\end{pmatrix} \cdot \begin{pmatrix}-2\sin\theta\\2\cos\theta\\0\end{pmatrix} d\theta - \int_0^{2\pi} \begin{pmatrix}3\sin\theta\\-4\cos\theta\\16\sin\theta\end{pmatrix} \cdot \begin{pmatrix}-\sin\theta\\\cos\theta\\0\end{pmatrix} d\theta \\
&= \int_0^{2\pi} -12\sin^2\theta -4\cos^2\theta +3\sin^2\theta +4\cos^2\theta d\theta \\
&= \int_0^{2\pi} -9\sin^2\theta d\theta \\
&= \int_0^{2\pi} \frac{9(\cos 2\theta - 1)}{2} d\theta \\
&= \frac{9}{2}\biggl[\frac{1}{2}\sin2\theta -\theta\biggr]_0^{2\pi} \\
&= -9\pi \\
\end{aligned}
$$
 
Physics news on Phys.org
lriuui0x0 said:
\begin{aligned}
&\phantom{{}={}} \int_S (\nabla \times \mathbf{A}) \cdot d\mathbf{S} \\
&= \int_0^{2\pi}d\theta \int_1^2 dr \begin{pmatrix}r^4-10r^2+25 + r\cos\theta \\ 0 \\ r^2-8\end{pmatrix} \cdot \begin{pmatrix}2r\cos\theta\\2r\sin\theta\\1\end{pmatrix} \\\end{aligned}

Here you've made a mistake with the change of variables. You have, for the surface ##\mathbf{r}(x,y) = (x,y,z(x,y))##,\begin{align*}
d\mathbf{S} = (\mathbf{r}_x \times \mathbf{r}_y) dx dy &= (2x, 2y, 1) \, dx dy \\
&= (2r\cos{\theta}, 2r\sin{\theta}, 1) \, rdrd\theta
\end{align*}in other words the Jacobian factor is ##\dfrac{\partial(x,y)}{\partial(r,\theta)} = r##, which you missed out. You ought to be calculating$$\int_0^{2\pi} d\theta \int_1^2 dr \left[2r^6\cos\theta -20r^4\cos\theta +50r^2\cos\theta + 2r^3\cos^2\theta + r^3- 8r \right] \\
$$
 
ergospherical said:
Here you've made a mistake with the change of variables. You have, for the surface ##\mathbf{r}(x,y) = (x,y,z(x,y))##,\begin{align*}
d\mathbf{S} = (\mathbf{r}_x \times \mathbf{r}_y) dx dy &= (2x, 2y, 1) \, dx dy \\
&= (2r\cos{\theta}, 2r\sin{\theta}, 1) \, rdrd\theta
\end{align*}in other words the Jacobian factor is ##\dfrac{\partial(x,y)}{\partial(r,\theta)} = r##, which you missed out. You ought to be calculating$$\int_0^{2\pi} d\theta \int_1^2 dr \left[2r^6\cos\theta -20r^4\cos\theta +50r^2\cos\theta + 2r^3\cos^2\theta + r^3- 8r \right] \\
$$
Got you, thanks!
 
No worries :smile:
You could check it directly as well by putting ##\mathbf{r}(r,\theta) = (r\cos{\theta}, r\sin{\theta}, 5-r^2)## then\begin{align*}
d\mathbf{S} &= (\mathbf{r}_{r} \times \mathbf{r}_{\theta}) dr d\theta \\
&= (2r^2 \cos{\theta}, 2r^2 \sin{\theta}, r) dr d\theta = (2r \cos{\theta}, 2r \sin{\theta}, 1) r dr d\theta
\end{align*}
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...