Stokes' theorem gives different results

Click For Summary

Homework Help Overview

The discussion revolves around the application of Stokes' theorem to a vector field and a surface defined in three-dimensional space. The original poster is attempting to calculate the surface flux of the curl of a vector field and compare it to the line integral of the vector field along the boundary of the surface. However, they report obtaining different results from these two calculations.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • The original poster calculates the curl of the vector field and attempts to evaluate the surface integral and line integral as per Stokes' theorem. They express uncertainty regarding their results and suspect mistakes in their calculations.
  • Some participants point out potential errors in the change of variables and the calculation of the surface element, suggesting that a Jacobian factor may have been overlooked.
  • There are suggestions to verify calculations by re-evaluating the surface parameterization and the corresponding surface normal vector.

Discussion Status

The discussion is ongoing, with participants actively engaging in identifying possible errors in the original poster's calculations. Some guidance has been offered regarding the correct approach to the change of variables and the evaluation of the surface integral.

Contextual Notes

Participants are working under the constraints of homework rules, which may limit the extent of assistance provided. The original poster's calculations involve multiple integrals and transformations that are under scrutiny for accuracy.

lriuui0x0
Messages
101
Reaction score
25
Given surface ##S## in ##\mathbb{R}^3##:

$$
z = 5-x^2-y^2, 1<z<4
$$

For a vector field ##\mathbf{A} = (3y, -xz, yz^2)##. I'm trying to calculate the surface flux of the curl of the vector field ##\int \nabla \times \mathbf{A} \cdot d\mathbf{S}##. By Stokes's theorem, this should be equal the the line integral of the vector field on the boundary of the surface. But I got different result. I'm sure I made some mistakes somewhere, but I couldn't spot.

The curl ##\nabla \times \mathbf{A}## is:

$$
\begin{aligned}
&\phantom{{}={}} \nabla \times \mathbf{A} \\
&= \begin{pmatrix}\frac{\partial yz^2}{\partial y} - \frac{\partial -xz}{\partial z} \\ \frac{\partial 3y}{\partial z} - \frac{\partial yz^2}{\partial x} \\ \frac{\partial -xz}{\partial x} - \frac{\partial 3y}{\partial y} \\ \end{pmatrix} \\
&= \begin{pmatrix}z^2 + x \\ 0 \\ -z-3\end{pmatrix} \\
&= \begin{pmatrix}r^4-10r^2+25 + r\cos\theta \\ 0 \\ r^2-8\end{pmatrix}
\end{aligned}
$$

The surface normal is:

$$
\begin{aligned}
&\phantom{{}={}} \frac{\partial}{\partial x}\begin{pmatrix}x\\y\\5-x^2-y^2\end{pmatrix} \times \frac{\partial}{\partial y}\begin{pmatrix}x\\y\\5-x^2-y^2\end{pmatrix} \\
&= \begin{pmatrix}1\\0\\-2x\end{pmatrix} \times \begin{pmatrix}0\\1\\-2y\end{pmatrix} \\
&= \begin{pmatrix}2x\\2y\\1\end{pmatrix} \\
&= \begin{pmatrix}2r\cos\theta\\2r\sin\theta\\1\end{pmatrix} \\
\end{aligned}
$$

Calculating surface integral:
$$
\begin{aligned}
&\phantom{{}={}} \int_S (\nabla \times \mathbf{A}) \cdot d\mathbf{S} \\
&= \int_0^{2\pi}d\theta \int_1^2 dr \begin{pmatrix}r^4-10r^2+25 + r\cos\theta \\ 0 \\ r^2-8\end{pmatrix} \cdot \begin{pmatrix}2r\cos\theta\\2r\sin\theta\\1\end{pmatrix} \\
&= \int_0^{2\pi}\int_1^2 2r^5\cos\theta -20r^3\cos\theta +50r\cos\theta + 2r^2\cos^2\theta + r^2- 8dr d\theta \\
&= \int_0^{2\pi}\biggl[\frac{1}{3}\cos\theta r^6 -5\cos\theta r^4 +25\cos\theta r^2 +\frac{2}{3}\cos^2\theta r^3 + \frac{1}{3}r^3 -8r\biggr]_1^2 d\theta \\
&= \int_0^{2\pi} \frac{14}{3}\cos^2\theta + 21\cos\theta - \frac{17}{3} d\theta \\
&= \int_0^{2\pi} \frac{7}{3}(1+\cos2\theta) + 21\cos\theta - \frac{17}{3} d\theta \\
&= \biggl[\frac{7}{6}\sin2\theta + 21\sin\theta -\frac{10}{3}\theta\biggr]_0^{2\pi} \\
&= -\frac{20}{3}\pi \\
\end{aligned}
$$

Yet if we calculate through the line integral:

$$
\begin{aligned}
&\phantom{{}={}} \int_{C_1} \mathbf{A} \cdot d\mathbf{C}_1 - \int_{C_2} \mathbf{A} \cdot d\mathbf{C}_2 \\
&= \int_0^{2\pi} \begin{pmatrix}6\sin\theta\\-2\cos\theta\\2\sin\theta\end{pmatrix} \cdot \frac{d}{d\theta} \begin{pmatrix}2\cos\theta\\2\sin\theta\\1\end{pmatrix} d\theta - \int_0^{2\pi} \begin{pmatrix}3\sin\theta\\-4\cos\theta\\16\sin\theta\end{pmatrix} \cdot \frac{d}{d\theta} \begin{pmatrix}\cos\theta\\\sin\theta\\4\end{pmatrix} d\theta \\
&= \int_0^{2\pi} \begin{pmatrix}6\sin\theta\\-2\cos\theta\\2\sin\theta\end{pmatrix} \cdot \begin{pmatrix}-2\sin\theta\\2\cos\theta\\0\end{pmatrix} d\theta - \int_0^{2\pi} \begin{pmatrix}3\sin\theta\\-4\cos\theta\\16\sin\theta\end{pmatrix} \cdot \begin{pmatrix}-\sin\theta\\\cos\theta\\0\end{pmatrix} d\theta \\
&= \int_0^{2\pi} -12\sin^2\theta -4\cos^2\theta +3\sin^2\theta +4\cos^2\theta d\theta \\
&= \int_0^{2\pi} -9\sin^2\theta d\theta \\
&= \int_0^{2\pi} \frac{9(\cos 2\theta - 1)}{2} d\theta \\
&= \frac{9}{2}\biggl[\frac{1}{2}\sin2\theta -\theta\biggr]_0^{2\pi} \\
&= -9\pi \\
\end{aligned}
$$
 
Physics news on Phys.org
lriuui0x0 said:
\begin{aligned}
&\phantom{{}={}} \int_S (\nabla \times \mathbf{A}) \cdot d\mathbf{S} \\
&= \int_0^{2\pi}d\theta \int_1^2 dr \begin{pmatrix}r^4-10r^2+25 + r\cos\theta \\ 0 \\ r^2-8\end{pmatrix} \cdot \begin{pmatrix}2r\cos\theta\\2r\sin\theta\\1\end{pmatrix} \\\end{aligned}

Here you've made a mistake with the change of variables. You have, for the surface ##\mathbf{r}(x,y) = (x,y,z(x,y))##,\begin{align*}
d\mathbf{S} = (\mathbf{r}_x \times \mathbf{r}_y) dx dy &= (2x, 2y, 1) \, dx dy \\
&= (2r\cos{\theta}, 2r\sin{\theta}, 1) \, rdrd\theta
\end{align*}in other words the Jacobian factor is ##\dfrac{\partial(x,y)}{\partial(r,\theta)} = r##, which you missed out. You ought to be calculating$$\int_0^{2\pi} d\theta \int_1^2 dr \left[2r^6\cos\theta -20r^4\cos\theta +50r^2\cos\theta + 2r^3\cos^2\theta + r^3- 8r \right] \\
$$
 
  • Like
Likes   Reactions: Orodruin
ergospherical said:
Here you've made a mistake with the change of variables. You have, for the surface ##\mathbf{r}(x,y) = (x,y,z(x,y))##,\begin{align*}
d\mathbf{S} = (\mathbf{r}_x \times \mathbf{r}_y) dx dy &= (2x, 2y, 1) \, dx dy \\
&= (2r\cos{\theta}, 2r\sin{\theta}, 1) \, rdrd\theta
\end{align*}in other words the Jacobian factor is ##\dfrac{\partial(x,y)}{\partial(r,\theta)} = r##, which you missed out. You ought to be calculating$$\int_0^{2\pi} d\theta \int_1^2 dr \left[2r^6\cos\theta -20r^4\cos\theta +50r^2\cos\theta + 2r^3\cos^2\theta + r^3- 8r \right] \\
$$
Got you, thanks!
 
No worries :smile:
You could check it directly as well by putting ##\mathbf{r}(r,\theta) = (r\cos{\theta}, r\sin{\theta}, 5-r^2)## then\begin{align*}
d\mathbf{S} &= (\mathbf{r}_{r} \times \mathbf{r}_{\theta}) dr d\theta \\
&= (2r^2 \cos{\theta}, 2r^2 \sin{\theta}, r) dr d\theta = (2r \cos{\theta}, 2r \sin{\theta}, 1) r dr d\theta
\end{align*}
 
  • Like
Likes   Reactions: Orodruin

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K