Stokes' theorem gives different results

Click For Summary
SUMMARY

The discussion centers on the application of Stokes' theorem to compute the surface flux of the curl of the vector field ##\mathbf{A} = (3y, -xz, yz^2)## over the surface defined by ##z = 5 - x^2 - y^2##. The user initially calculated the surface integral and the line integral, obtaining different results: ##-\frac{20}{3}\pi## for the surface integral and ##-9\pi## for the line integral. The discrepancy arose from an oversight in the Jacobian factor during the change of variables, which was later clarified by another participant, emphasizing the importance of correctly applying the Jacobian in surface integrals.

PREREQUISITES
  • Understanding of vector calculus, specifically Stokes' theorem
  • Familiarity with curl and surface integrals
  • Knowledge of parameterization of surfaces in three-dimensional space
  • Proficiency in using Jacobians for change of variables in integrals
NEXT STEPS
  • Review the application of Stokes' theorem in vector calculus
  • Study the computation of curl for vector fields in three dimensions
  • Learn about parameterizing surfaces and calculating surface integrals
  • Explore the use of Jacobians in multivariable calculus for change of variables
USEFUL FOR

Mathematicians, physics students, and engineers who are working with vector fields and surface integrals, particularly those interested in the practical applications of Stokes' theorem in three-dimensional calculus.

lriuui0x0
Messages
101
Reaction score
25
Given surface ##S## in ##\mathbb{R}^3##:

$$
z = 5-x^2-y^2, 1<z<4
$$

For a vector field ##\mathbf{A} = (3y, -xz, yz^2)##. I'm trying to calculate the surface flux of the curl of the vector field ##\int \nabla \times \mathbf{A} \cdot d\mathbf{S}##. By Stokes's theorem, this should be equal the the line integral of the vector field on the boundary of the surface. But I got different result. I'm sure I made some mistakes somewhere, but I couldn't spot.

The curl ##\nabla \times \mathbf{A}## is:

$$
\begin{aligned}
&\phantom{{}={}} \nabla \times \mathbf{A} \\
&= \begin{pmatrix}\frac{\partial yz^2}{\partial y} - \frac{\partial -xz}{\partial z} \\ \frac{\partial 3y}{\partial z} - \frac{\partial yz^2}{\partial x} \\ \frac{\partial -xz}{\partial x} - \frac{\partial 3y}{\partial y} \\ \end{pmatrix} \\
&= \begin{pmatrix}z^2 + x \\ 0 \\ -z-3\end{pmatrix} \\
&= \begin{pmatrix}r^4-10r^2+25 + r\cos\theta \\ 0 \\ r^2-8\end{pmatrix}
\end{aligned}
$$

The surface normal is:

$$
\begin{aligned}
&\phantom{{}={}} \frac{\partial}{\partial x}\begin{pmatrix}x\\y\\5-x^2-y^2\end{pmatrix} \times \frac{\partial}{\partial y}\begin{pmatrix}x\\y\\5-x^2-y^2\end{pmatrix} \\
&= \begin{pmatrix}1\\0\\-2x\end{pmatrix} \times \begin{pmatrix}0\\1\\-2y\end{pmatrix} \\
&= \begin{pmatrix}2x\\2y\\1\end{pmatrix} \\
&= \begin{pmatrix}2r\cos\theta\\2r\sin\theta\\1\end{pmatrix} \\
\end{aligned}
$$

Calculating surface integral:
$$
\begin{aligned}
&\phantom{{}={}} \int_S (\nabla \times \mathbf{A}) \cdot d\mathbf{S} \\
&= \int_0^{2\pi}d\theta \int_1^2 dr \begin{pmatrix}r^4-10r^2+25 + r\cos\theta \\ 0 \\ r^2-8\end{pmatrix} \cdot \begin{pmatrix}2r\cos\theta\\2r\sin\theta\\1\end{pmatrix} \\
&= \int_0^{2\pi}\int_1^2 2r^5\cos\theta -20r^3\cos\theta +50r\cos\theta + 2r^2\cos^2\theta + r^2- 8dr d\theta \\
&= \int_0^{2\pi}\biggl[\frac{1}{3}\cos\theta r^6 -5\cos\theta r^4 +25\cos\theta r^2 +\frac{2}{3}\cos^2\theta r^3 + \frac{1}{3}r^3 -8r\biggr]_1^2 d\theta \\
&= \int_0^{2\pi} \frac{14}{3}\cos^2\theta + 21\cos\theta - \frac{17}{3} d\theta \\
&= \int_0^{2\pi} \frac{7}{3}(1+\cos2\theta) + 21\cos\theta - \frac{17}{3} d\theta \\
&= \biggl[\frac{7}{6}\sin2\theta + 21\sin\theta -\frac{10}{3}\theta\biggr]_0^{2\pi} \\
&= -\frac{20}{3}\pi \\
\end{aligned}
$$

Yet if we calculate through the line integral:

$$
\begin{aligned}
&\phantom{{}={}} \int_{C_1} \mathbf{A} \cdot d\mathbf{C}_1 - \int_{C_2} \mathbf{A} \cdot d\mathbf{C}_2 \\
&= \int_0^{2\pi} \begin{pmatrix}6\sin\theta\\-2\cos\theta\\2\sin\theta\end{pmatrix} \cdot \frac{d}{d\theta} \begin{pmatrix}2\cos\theta\\2\sin\theta\\1\end{pmatrix} d\theta - \int_0^{2\pi} \begin{pmatrix}3\sin\theta\\-4\cos\theta\\16\sin\theta\end{pmatrix} \cdot \frac{d}{d\theta} \begin{pmatrix}\cos\theta\\\sin\theta\\4\end{pmatrix} d\theta \\
&= \int_0^{2\pi} \begin{pmatrix}6\sin\theta\\-2\cos\theta\\2\sin\theta\end{pmatrix} \cdot \begin{pmatrix}-2\sin\theta\\2\cos\theta\\0\end{pmatrix} d\theta - \int_0^{2\pi} \begin{pmatrix}3\sin\theta\\-4\cos\theta\\16\sin\theta\end{pmatrix} \cdot \begin{pmatrix}-\sin\theta\\\cos\theta\\0\end{pmatrix} d\theta \\
&= \int_0^{2\pi} -12\sin^2\theta -4\cos^2\theta +3\sin^2\theta +4\cos^2\theta d\theta \\
&= \int_0^{2\pi} -9\sin^2\theta d\theta \\
&= \int_0^{2\pi} \frac{9(\cos 2\theta - 1)}{2} d\theta \\
&= \frac{9}{2}\biggl[\frac{1}{2}\sin2\theta -\theta\biggr]_0^{2\pi} \\
&= -9\pi \\
\end{aligned}
$$
 
Physics news on Phys.org
lriuui0x0 said:
\begin{aligned}
&\phantom{{}={}} \int_S (\nabla \times \mathbf{A}) \cdot d\mathbf{S} \\
&= \int_0^{2\pi}d\theta \int_1^2 dr \begin{pmatrix}r^4-10r^2+25 + r\cos\theta \\ 0 \\ r^2-8\end{pmatrix} \cdot \begin{pmatrix}2r\cos\theta\\2r\sin\theta\\1\end{pmatrix} \\\end{aligned}

Here you've made a mistake with the change of variables. You have, for the surface ##\mathbf{r}(x,y) = (x,y,z(x,y))##,\begin{align*}
d\mathbf{S} = (\mathbf{r}_x \times \mathbf{r}_y) dx dy &= (2x, 2y, 1) \, dx dy \\
&= (2r\cos{\theta}, 2r\sin{\theta}, 1) \, rdrd\theta
\end{align*}in other words the Jacobian factor is ##\dfrac{\partial(x,y)}{\partial(r,\theta)} = r##, which you missed out. You ought to be calculating$$\int_0^{2\pi} d\theta \int_1^2 dr \left[2r^6\cos\theta -20r^4\cos\theta +50r^2\cos\theta + 2r^3\cos^2\theta + r^3- 8r \right] \\
$$
 
  • Like
Likes   Reactions: Orodruin
ergospherical said:
Here you've made a mistake with the change of variables. You have, for the surface ##\mathbf{r}(x,y) = (x,y,z(x,y))##,\begin{align*}
d\mathbf{S} = (\mathbf{r}_x \times \mathbf{r}_y) dx dy &= (2x, 2y, 1) \, dx dy \\
&= (2r\cos{\theta}, 2r\sin{\theta}, 1) \, rdrd\theta
\end{align*}in other words the Jacobian factor is ##\dfrac{\partial(x,y)}{\partial(r,\theta)} = r##, which you missed out. You ought to be calculating$$\int_0^{2\pi} d\theta \int_1^2 dr \left[2r^6\cos\theta -20r^4\cos\theta +50r^2\cos\theta + 2r^3\cos^2\theta + r^3- 8r \right] \\
$$
Got you, thanks!
 
No worries :smile:
You could check it directly as well by putting ##\mathbf{r}(r,\theta) = (r\cos{\theta}, r\sin{\theta}, 5-r^2)## then\begin{align*}
d\mathbf{S} &= (\mathbf{r}_{r} \times \mathbf{r}_{\theta}) dr d\theta \\
&= (2r^2 \cos{\theta}, 2r^2 \sin{\theta}, r) dr d\theta = (2r \cos{\theta}, 2r \sin{\theta}, 1) r dr d\theta
\end{align*}
 
  • Like
Likes   Reactions: Orodruin

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K