I Stored magnetic energy of solenoid

AI Thread Summary
The discussion focuses on understanding the stored magnetic energy in a solenoid, specifically the interpretation of the second integral and the vector potential A. The total energy is expressed as (1/2μ_0)∫B²dV, which is split into regions containing the solenoid and the surrounding space. By applying vector calculus identities and Ampere’s equation, the relationship between the magnetic field B and the vector potential A is clarified. The simplification shows that outside the solenoid, where there is no current, the integral can be related to the boundary contributions of the regions. This leads to the conclusion that the total magnetic energy can be calculated by combining contributions from both regions.
Szecska8
Messages
2
Reaction score
2
TL;DR Summary
In my electrodynamics class there was a problem where self-inductance was calculated from the stored magnetic energy of the solenoid, which was calculated with the equation below.
Screenshot (62).png

Can someone explain to me what the second integral represents and what is A?
 
Physics news on Phys.org
Usually alphabet A is used for vector potential which generates magnetic field,
\nabla \times \mathbf{A}=\mathbf{B}
 
The answer I got on reddit, that helped me understand it.

The total energy is given by

(1/2μ_0)∫B2dV

where the integral is taken over all space. Let us now split the space into a region X which contains the solenoid, and a region Y which is everything else. We can now write the integral as

∫B2dV=∫_X B2dV + ∫_Y B2dV

If you start from the vector calculus identity

∇•(AxB)=B•(∇xA)-A•(∇xB)

then insert the definition

∇xA=B

and Ampere’s equation

∇xB=μ_0j

which will be valid assuming static fields, you get

∇•(AxB)=B2-μ_0Aj

Outside the solenoid where there is zero current this simplifies to just

∇•(AxB)=B2

so by Gauss’ theorem we must have

∫_Y B2dV=∮_∂Y (AxB)•dS

Now the boundary ∂Y can be split into two contributions. The first is the boundary at infinity which does not contribute to the integral because the fields decay to zero sufficiently quickly. The second is the boundary shared with region X. This is exactly the same as the boundary of X with the exception that on ∂X the unit normal is oriented in the opposite direction since unit normals always point outwards. Thus

∮_∂Y (AxB)•dS=-∮_∂X (AxB)•dS

and therefore

∫B2dV=∫_X B2dV -∮_∂X (AxB)•dS
 
  • Like
Likes TSny and vanhees71
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (Second part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8. I want to understand some issues more correctly. It's a little bit difficult to understand now. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. In the page 196, in the first paragraph, the author argues as follows ...
Thread 'Inducing EMF Through a Coil: Understanding Flux'
Thank you for reading my post. I can understand why a change in magnetic flux through a conducting surface would induce an emf, but how does this work when inducing an emf through a coil? How does the flux through the empty space between the wires have an effect on the electrons in the wire itself? In the image below is a coil with a magnetic field going through the space between the wires but not necessarily through the wires themselves. Thank you.
Back
Top