I'm trying to clarify for myself the relation between the stress-energy tensor and the mass scalar term in metric solutions to Einstein's equations. Maybe I should also say I'm trying to understand the energy tensor better, or how it relates to boundary conditions on the solutions.(adsbygoogle = window.adsbygoogle || []).push({});

My question is, given a nonzero s-e tensor, can one solve for the mass term that will show up in the metric? (If the tensor were zero, one would have a "vacuum solution" in which the mass term is only specified as a boundary condition.) Or, given the energy density and pressures of the tensor, are there still degrees of freedom for mass-energy configurations producing that tensor?

(I'm assuming that the mass in question is coextensive with the tensor volume--so a simple case like the interior of a star or planet.)

Part of my confusion stems from the fact that the tensor is sometimes defined in terms of the metric (for a fluid in equilibrium, T=(ρ+p)vv + p*g, where g is the metric), so that the metric now appears on both sides of Einstein's equations. How does one eliminate that circularity?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Stress-energy tensor & mass term in metric

**Physics Forums | Science Articles, Homework Help, Discussion**