Structure of Earth, pressure and density model

Click For Summary
SUMMARY

The forum discussion presents an analytical model of Earth's density as a function of geocentric distance, utilizing interpolative curve fits to derive density equations across various radius fractions. The model indicates that the integrated mass of Earth is 5.9953e+24 kilograms, closely aligning with the measured value, and calculates surface gravity at 9.8579 m/sec² with an average density of 5534.8 kg/m³. The gravitational acceleration peaks at 10.699 m/sec² at the core-mantle boundary, demonstrating the model's effectiveness in fitting the Preliminary Reference Earth Model (PREM) density profile.

PREREQUISITES
  • Understanding of geophysical modeling techniques
  • Familiarity with density and gravitational acceleration concepts
  • Knowledge of the Preliminary Reference Earth Model (PREM)
  • Proficiency in mathematical interpolation methods
NEXT STEPS
  • Explore advanced geophysical modeling software such as MATLAB or Python libraries for numerical analysis
  • Study the implications of density variations on seismic wave propagation
  • Investigate the relationship between pressure and density in planetary interiors
  • Learn about the methodologies for calculating gravitational fields in planetary science
USEFUL FOR

Geophysicists, planetary scientists, and researchers involved in Earth sciences who are interested in modeling Earth's internal structure and understanding gravitational dynamics.

Jenab2
Messages
85
Reaction score
22
I created interpolative curvefits to the graph of Earth's density as a function of radius, shown here:

RadialDensityPREM.jpg

(Image from Wikipedia)

Earth is assumed to be a sphere of radius 6371 kilometers. The independent variable r is the geocentric distance as a fraction of the Earth's radius; i.e. the range of r is [0,1]. The dependent variable p is Earth's density in kilograms per cubic meter.

If 0 ≤ r < 0.1915,
ρ = −8088.796304 r² − 330.8910692 r + 13100.0

If 0.1915 ≤ r < 0.5469,
ρ = −10693.43214 r² + 1635.478802 r + 12203.95803

If 0.5469 ≤ r < 0.8947,
ρ = −3450.258769 r + 7486.946521

If 0.8947 ≤ r < 0.9953,
ρ = −6212.723658 r + 9558.523857

If 0.9953 ≤ r < 0.9992,
ρ = −102564.1026 r + 105082.0513

If 0.9992 ≤ r ≤ 1,
ρ = −125000.0 r + 126000.0

From these curvefits, the integrated mass of Earth is 5.9953e+24 kilograms, which is in excess of the experimentally measured value by 0.36%. The calculated surface gravity is 9.8579 m/sec², and the calculated average density is 5534.8 kg/m³. The relative errors are less than 1% in each case, so the equations appear to be returning a very good fit to the PREM density profile, ρ(r), of Earth's interior.

The absolute maximum for gravitational acceleration inside Earth, g(r), occurs at r=0.5470 Re (at the core-mantle boundary), enclosing 0.3259 Me, resulting in g=10.699 m/sec². There is also a local maximum for g(r) at r=0.8950 Re, enclosing 0.8179 Me, resulting in g=10.029 m/sec².

To follow is the model showing:

1. Radius fraction, r/Re
2. Enclosed mass fraction, M(r)/Me
3. Local density in kilograms per cubic meter, ρ(r)
4. Local gravitational acceleration in meters per second squared, g(r)
5. Local pressure in gigaPascals, P(r)

0.00 , 0.000000 , 13100.00 , 0.00000 , 364.8373
0.01 , 0.000002 , 13095.88 , 0.23327 , 364.7400
0.02 , 0.000019 , 13090.15 , 0.46640 , 364.4482
0.03 , 0.000064 , 13082.79 , 0.69933 , 363.9622
0.04 , 0.000152 , 13073.82 , 0.93203 , 363.2826
0.05 , 0.000296 , 13063.23 , 1.16442 , 362.4098
0.06 , 0.000512 , 13051.03 , 1.39647 , 361.3446
0.07 , 0.000812 , 13037.20 , 1.62812 , 360.0878
0.08 , 0.001211 , 13021.76 , 1.85932 , 358.6403
0.09 , 0.001723 , 13004.70 , 2.09001 , 357.0031
0.10 , 0.002362 , 12986.02 , 2.32015 , 355.1774
0.11 , 0.003141 , 12965.73 , 2.54968 , 353.1645
0.12 , 0.004073 , 12943.81 , 2.77856 , 350.9656
0.13 , 0.005173 , 12920.28 , 3.00672 , 348.5823
0.14 , 0.006453 , 12895.13 , 3.23412 , 346.0162
0.15 , 0.007927 , 12868.37 , 3.46071 , 343.2689
0.16 , 0.009607 , 12839.98 , 3.68642 , 340.3423
0.17 , 0.011507 , 12809.98 , 3.91123 , 337.2383
0.18 , 0.013639 , 12778.36 , 4.13506 , 333.9589
0.19 , 0.016016 , 12745.13 , 4.35786 , 330.5063
0.20 , 0.018541 , 12103.32 , 4.55302 , 327.0398
0.21 , 0.021305 , 12075.83 , 4.74542 , 323.4590
0.22 , 0.024338 , 12046.20 , 4.93942 , 319.7381
0.23 , 0.027651 , 12014.44 , 5.13451 , 315.8775
0.24 , 0.031256 , 11980.53 , 5.33026 , 311.8781
0.25 , 0.035162 , 11944.49 , 5.52632 , 307.7410
0.26 , 0.039381 , 11906.31 , 5.72240 , 303.4678
0.27 , 0.043922 , 11865.99 , 5.91824 , 299.0602
0.28 , 0.048795 , 11823.53 , 6.11361 , 294.5203
0.29 , 0.054010 , 11778.93 , 6.30832 , 289.8505
0.30 , 0.059575 , 11732.19 , 6.50220 , 285.0532
0.31 , 0.065500 , 11683.32 , 6.69507 , 280.1312
0.32 , 0.071793 , 11632.30 , 6.88681 , 275.0874
0.33 , 0.078461 , 11579.15 , 7.07726 , 269.9247
0.34 , 0.085514 , 11523.86 , 7.26632 , 264.6466
0.35 , 0.092957 , 11466.43 , 7.45386 , 259.2562
0.36 , 0.100797 , 11406.86 , 7.63977 , 253.7573
0.37 , 0.109042 , 11345.15 , 7.82396 , 248.1534
0.38 , 0.117696 , 11281.31 , 8.00631 , 242.4483
0.39 , 0.126766 , 11215.32 , 8.18673 , 236.6459
0.40 , 0.136256 , 11147.20 , 8.36514 , 230.7503
0.41 , 0.146171 , 11076.94 , 8.54143 , 224.7657
0.42 , 0.156515 , 11004.54 , 8.71553 , 218.6962
0.43 , 0.167291 , 10930.00 , 8.88735 , 212.5462
0.44 , 0.178502 , 10853.32 , 9.05681 , 206.3203
0.45 , 0.190151 , 10774.50 , 9.22382 , 200.0228
0.46 , 0.202239 , 10693.55 , 9.38830 , 193.6586
0.47 , 0.214768 , 10610.45 , 9.55018 , 187.2322
0.48 , 0.227738 , 10525.22 , 9.70938 , 180.7485
0.49 , 0.241150 , 10437.85 , 9.86582 , 174.2123
0.50 , 0.255003 , 10348.34 , 10.01942 , 167.6287
0.51 , 0.269295 , 10256.69 , 10.17011 , 161.0025
0.52 , 0.284025 , 10162.90 , 10.31782 , 154.3390
0.53 , 0.299191 , 10066.98 , 10.46247 , 147.6431
0.54 , 0.314789 , 9968.91 , 10.60398 , 140.9202
0.55 , 0.328639 , 5589.30 , 10.67163 , 135.0875
0.56 , 0.337975 , 5554.80 , 10.58635 , 131.3145
0.57 , 0.347591 , 5520.30 , 10.50887 , 127.5935
0.58 , 0.357488 , 5485.80 , 10.43862 , 123.9216
0.59 , 0.367668 , 5451.29 , 10.37503 , 120.2961
0.60 , 0.378133 , 5416.79 , 10.31762 , 116.7143
0.61 , 0.388884 , 5382.29 , 10.26591 , 113.1740
0.62 , 0.399922 , 5347.79 , 10.21948 , 109.6732
0.63 , 0.411248 , 5313.28 , 10.17795 , 106.2097
0.64 , 0.422864 , 5278.78 , 10.14095 , 102.7819
0.65 , 0.434771 , 5244.28 , 10.10815 , 99.3882
0.66 , 0.446970 , 5209.78 , 10.07924 , 96.0269
0.67 , 0.459461 , 5175.27 , 10.05394 , 92.6968
0.68 , 0.472244 , 5140.77 , 10.03198 , 89.3966
0.69 , 0.485322 , 5106.27 , 10.01311 , 86.1251
0.70 , 0.498693 , 5071.77 , 9.99711 , 82.8813
0.71 , 0.512358 , 5037.26 , 9.98377 , 79.6643
0.72 , 0.526318 , 5002.76 , 9.97289 , 76.4730
0.73 , 0.540573 , 4968.26 , 9.96428 , 73.3068
0.74 , 0.555122 , 4933.76 , 9.95778 , 70.1648
0.75 , 0.569966 , 4899.25 , 9.95322 , 67.0465
0.76 , 0.585103 , 4864.75 , 9.95045 , 63.9512
0.77 , 0.600535 , 4830.25 , 9.94934 , 60.8784
0.78 , 0.616259 , 4795.74 , 9.94974 , 57.8275
0.79 , 0.632277 , 4761.24 , 9.95155 , 54.7982
0.80 , 0.648587 , 4726.74 , 9.95464 , 51.7900
0.81 , 0.665188 , 4692.24 , 9.95891 , 48.8026
0.82 , 0.682079 , 4657.73 , 9.96425 , 45.8356
0.83 , 0.699259 , 4623.23 , 9.97056 , 42.8888
0.84 , 0.716728 , 4588.73 , 9.97777 , 39.9620
0.85 , 0.734484 , 4554.23 , 9.98578 , 37.0548
0.86 , 0.752525 , 4519.72 , 9.99451 , 34.1672
0.87 , 0.770850 , 4485.22 , 10.00389 , 31.2989
0.88 , 0.789458 , 4450.72 , 10.01385 , 28.4498
0.89 , 0.808346 , 4416.22 , 10.02432 , 25.6199
0.90 , 0.826568 , 3967.07 , 10.02377 , 22.9477
0.91 , 0.844103 , 3904.95 , 10.01268 , 20.4355
0.92 , 0.861745 , 3842.82 , 10.00094 , 17.9658
0.93 , 0.879486 , 3780.69 , 9.98850 , 15.5386
0.94 , 0.897317 , 3718.56 , 9.97534 , 13.1540
0.95 , 0.915229 , 3656.44 , 9.96139 , 10.8121
0.96 , 0.933214 , 3594.31 , 9.94664 , 8.5130
0.97 , 0.951264 , 3532.18 , 9.93104 , 6.2567
0.98 , 0.969368 , 3470.05 , 9.91457 , 4.0433
0.99 , 0.987517 , 3407.93 , 9.89718 , 1.8729
1.00 , 1.003515 , 1000.00 , 9.85737 , 0.0001
 
Last edited:
Astronomy news on Phys.org
Me = 5.974e24 kilograms
Re = 6371000 meters

The integration over density to find the enclosed mass, M(r), used layers of dr=6.371 centimeters thickness.
 

Similar threads

  • · Replies 20 ·
Replies
20
Views
1K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
7
Views
2K
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
10K
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K