Struggling immensely with tensors in multivariable calculus

Click For Summary
The discussion revolves around the challenge of understanding tensors in multivariable calculus, specifically the components of a Cartesian tensor of rank 2 represented by ∂ƒ²/∂xi∂xj. Participants express confusion about the fundamental concepts of tensors, including their definitions and transformations under coordinate changes. The importance of understanding how these components behave during transformations is emphasized, as it relates to the definition of rank 2 tensors. There is a shared struggle with grasping the basic principles of tensors, including their representation as matrices and their relationship to scalars and vectors. Overall, the conversation highlights the need for clearer explanations and foundational knowledge in tensor mathematics.
ParabolaDog
Messages
3
Reaction score
0

Homework Statement


If f(x) is a scalar-valued function, show that ∂ƒ²/∂xi∂xj are the components of a Cartesian tensor of rank 2.

Homework Equations


N/A

The Attempt at a Solution


I don't even know where to begin. We began learning tensors in multivariable calculus (though I don't think this is supposed to be a part of our curriculum) and this question came up. I'm not sure at all how to answer it. Any help in understanding this problem would be hugely appreciated, even if it doesn't solve the entire thing.

Thank you.
 
Physics news on Phys.org
ParabolaDog said:

Homework Statement


If f(x) is a scalar-valued function, show that ∂ƒ²/∂xi∂xj are the components of a Cartesian tensor of rank 2.

Homework Equations


N/A

The Attempt at a Solution


I don't even know where to begin. We began learning tensors in multivariable calculus (though I don't think this is supposed to be a part of our curriculum) and this question came up. I'm not sure at all how to answer it. Any help in understanding this problem would be hugely appreciated, even if it doesn't solve the entire thing.

Thank you.
What is the fundamental definition of a Cartesian tensor of rank 2? (Hint: it has to do with what happens when we make a change of coordinates)
 
nrqed said:
What is the fundamental definition of a Cartesian tensor of rank 2? (Hint: it has to do with what happens when we make a change of coordinates)

Is it a matrix? I've learned that a tensor of rank 0 is a scalar and that a tensor of rank 1 is a vector, but I'm not sure I fully understand what exactly tensors are supposed to represent.
 
ParabolaDog said:
Is it a matrix? I've learned that a tensor of rank 0 is a scalar and that a tensor of rank 1 is a vector, but I'm not sure I fully understand what exactly tensors are supposed to represent.
well, one can think of it as a matrix since there are two indices but this is not important here, what is important is how it transforms under a change of coordinates.
 
nrqed said:
well, one can think of it as a matrix since there are two indices but this is not important here, what is important is how it transforms under a change of coordinates.

I'm afraid even this basic a grasp of tensors is lost to me. What exactly is a tensor in the first place? I don't think I can answer your initial question concerning the fundamental definition of a rank two tensor.
 
What happens to the components of a position vector (tensor of rank 1) ##x_i## (where ##x_1 = x##, ##x_2 = y##, ##x_3 = z##) when you rotate the xyz coordinate system? What about a two index object ##a_{ij} = x_i x_j##, (for which ##a_{11} = x^2## and ##a_{12} = xy##, etc.)? Now you should use the chain rule of partial derivatives to show that under rotations the object ##\frac{\partial}{\partial x_i \partial x_j}## has a transformation law that is similar to that of the ##a_{ij}##...
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
2
Views
2K
Replies
19
Views
2K
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K