Stuck calculating probability of measuring ##S_y## for spin 1 particle

earthling75
Messages
3
Reaction score
0
Homework Statement
Calculate the probability of finding a particle with spin = 1 in a given state to have an eigenvalue of ##\hbar$ in $S_y## basis.
Relevant Equations
$$S_{\pm}|s,m\rangle = \hbar \sqrt{s(s+1)-m(m\pm 1)}|s,(m\pm 1)\rangle$$
Probability ##=|\langle \chi |\chi_+^y \rangle|^2##
I know how to construct Sy for spin = 1 case from the raising and lowering operators.
I get
$$
S_y=\frac{i\hbar}{\sqrt{2}}\begin{pmatrix}
0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \\
\end{pmatrix}
$$
From what I have seen, the eigenspinor for $\hbar$ is found by solving

$$
\frac{i\hbar}{\sqrt{2}}\begin{pmatrix}
0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \\
\end{pmatrix}
\cdot
\begin{pmatrix}
\alpha \\ \beta \\ \gamma
\end{pmatrix} =
\hbar \begin{pmatrix}
\alpha \\ \beta \\ \gamma
\end{pmatrix}
$$
That leaves me with three equations
$$
-\frac{i}{\sqrt{2}} \beta = \alpha$$
$$
\frac{i}{\sqrt{2}} \alpha - \frac{i}{\sqrt{2}}\gamma = \beta$$
$$
\frac{i}{\sqrt{2}} \beta = \gamma$$

I think I know how to construct the eigenspinor from these values. Is it simply
$$
\chi_{+}^y=\frac{1}{\sqrt{2}}\begin{pmatrix}
-\frac{i}{\sqrt{2}} \\ 1 \\ \frac{i}{\sqrt{2}}
\end{pmatrix}
$$?

The actual particle I'm trying to measure is in the state
$$
\chi = \frac{1}{2}
\begin{pmatrix} 1\\ i\sqrt{2}\\ -1
\end{pmatrix}
$$
but when I do the calculation, I get
$$
|\langle \chi_{+}^y|\chi\rangle|=\frac{1}{\sqrt{2}}\begin{pmatrix}
\frac{i}{\sqrt{2}}& 1& -\frac{i}{\sqrt{2}}
\end{pmatrix}\cdot \frac{1}{2}\begin{pmatrix}1\\ i\sqrt{2}\\-1
\end{pmatrix} =1
$$
What am I doing wrong?
 
Last edited:
Physics news on Phys.org
earthling75 said:
but when I do the calculation, I get
$$
| \langle \chi_{+}^y | \chi\rangle| =
\frac{1}{\sqrt{2}} \begin{pmatrix} -\frac{i}{\sqrt{2}} & 1 & \frac{i}{\sqrt{2}} \end{pmatrix}
\cdot
\frac{1}{2} \begin{pmatrix} 1 \\ i \sqrt{2} \\ -1 \end{pmatrix} = 1
$$ What am I doing wrong? If I follow the same procedure for ##-\hbar## or ##0## I get 1.
You forgot to conjugate the first matrix. Nevertheless, you should find a probability of 1. Note that ##\lvert \chi \rangle## is a multiple of the eigenstate.
 
vela said:
You forgot to conjugate the first matrix. Nevertheless, you should find a probability of 1. Note that ##\lvert \chi \rangle## is a multiple of the eigenstate.
I fixed that typo. So,
$$
\frac{1}{\sqrt{2}}\begin{pmatrix}
-\frac{i}{\sqrt{2}}\\ 1\\ \frac{i}{\sqrt{2}}
\end{pmatrix} =\left(-i\right) \frac{1}{2}\begin{pmatrix}1\\ i\sqrt{2}\\-1
\end{pmatrix}
$$
If I next try to measure ##-\hbar## in ##S_z## basis, I get

$$
\begin{pmatrix}
0 & 0 & -1 \\
\end{pmatrix} \cdot \frac{1}{2}\begin{pmatrix}1\\ i\sqrt{2}\\-1
\end{pmatrix}=\frac{1}{2}
$$
Probability ##= \left(\frac{1}{2}\right)^2=\frac{1}{4}##.

Do I have to find the new eisgenspinor in ##z## basis or is ##
\begin{pmatrix}
0 & 0 & -1 \\
\end{pmatrix}## okay?
 
earthling75 said:
Do I have to find the new eisgenspinor in ##z## basis or is ##
\begin{pmatrix}
0 & 0 & -1 \\
\end{pmatrix}## okay?
If you want to find the probabilities of the various measurement outcomes for spin in the z-direction, then you can simply read off the state vector column entries. That's the advantage of having the state expressed in the z-basis in the first place.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top