Stuck calculating probability of measuring ##S_y## for spin 1 particle

earthling75
Messages
3
Reaction score
0
Homework Statement
Calculate the probability of finding a particle with spin = 1 in a given state to have an eigenvalue of ##\hbar$ in $S_y## basis.
Relevant Equations
$$S_{\pm}|s,m\rangle = \hbar \sqrt{s(s+1)-m(m\pm 1)}|s,(m\pm 1)\rangle$$
Probability ##=|\langle \chi |\chi_+^y \rangle|^2##
I know how to construct Sy for spin = 1 case from the raising and lowering operators.
I get
$$
S_y=\frac{i\hbar}{\sqrt{2}}\begin{pmatrix}
0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \\
\end{pmatrix}
$$
From what I have seen, the eigenspinor for $\hbar$ is found by solving

$$
\frac{i\hbar}{\sqrt{2}}\begin{pmatrix}
0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \\
\end{pmatrix}
\cdot
\begin{pmatrix}
\alpha \\ \beta \\ \gamma
\end{pmatrix} =
\hbar \begin{pmatrix}
\alpha \\ \beta \\ \gamma
\end{pmatrix}
$$
That leaves me with three equations
$$
-\frac{i}{\sqrt{2}} \beta = \alpha$$
$$
\frac{i}{\sqrt{2}} \alpha - \frac{i}{\sqrt{2}}\gamma = \beta$$
$$
\frac{i}{\sqrt{2}} \beta = \gamma$$

I think I know how to construct the eigenspinor from these values. Is it simply
$$
\chi_{+}^y=\frac{1}{\sqrt{2}}\begin{pmatrix}
-\frac{i}{\sqrt{2}} \\ 1 \\ \frac{i}{\sqrt{2}}
\end{pmatrix}
$$?

The actual particle I'm trying to measure is in the state
$$
\chi = \frac{1}{2}
\begin{pmatrix} 1\\ i\sqrt{2}\\ -1
\end{pmatrix}
$$
but when I do the calculation, I get
$$
|\langle \chi_{+}^y|\chi\rangle|=\frac{1}{\sqrt{2}}\begin{pmatrix}
\frac{i}{\sqrt{2}}& 1& -\frac{i}{\sqrt{2}}
\end{pmatrix}\cdot \frac{1}{2}\begin{pmatrix}1\\ i\sqrt{2}\\-1
\end{pmatrix} =1
$$
What am I doing wrong?
 
Last edited:
Physics news on Phys.org
earthling75 said:
but when I do the calculation, I get
$$
| \langle \chi_{+}^y | \chi\rangle| =
\frac{1}{\sqrt{2}} \begin{pmatrix} -\frac{i}{\sqrt{2}} & 1 & \frac{i}{\sqrt{2}} \end{pmatrix}
\cdot
\frac{1}{2} \begin{pmatrix} 1 \\ i \sqrt{2} \\ -1 \end{pmatrix} = 1
$$ What am I doing wrong? If I follow the same procedure for ##-\hbar## or ##0## I get 1.
You forgot to conjugate the first matrix. Nevertheless, you should find a probability of 1. Note that ##\lvert \chi \rangle## is a multiple of the eigenstate.
 
vela said:
You forgot to conjugate the first matrix. Nevertheless, you should find a probability of 1. Note that ##\lvert \chi \rangle## is a multiple of the eigenstate.
I fixed that typo. So,
$$
\frac{1}{\sqrt{2}}\begin{pmatrix}
-\frac{i}{\sqrt{2}}\\ 1\\ \frac{i}{\sqrt{2}}
\end{pmatrix} =\left(-i\right) \frac{1}{2}\begin{pmatrix}1\\ i\sqrt{2}\\-1
\end{pmatrix}
$$
If I next try to measure ##-\hbar## in ##S_z## basis, I get

$$
\begin{pmatrix}
0 & 0 & -1 \\
\end{pmatrix} \cdot \frac{1}{2}\begin{pmatrix}1\\ i\sqrt{2}\\-1
\end{pmatrix}=\frac{1}{2}
$$
Probability ##= \left(\frac{1}{2}\right)^2=\frac{1}{4}##.

Do I have to find the new eisgenspinor in ##z## basis or is ##
\begin{pmatrix}
0 & 0 & -1 \\
\end{pmatrix}## okay?
 
earthling75 said:
Do I have to find the new eisgenspinor in ##z## basis or is ##
\begin{pmatrix}
0 & 0 & -1 \\
\end{pmatrix}## okay?
If you want to find the probabilities of the various measurement outcomes for spin in the z-direction, then you can simply read off the state vector column entries. That's the advantage of having the state expressed in the z-basis in the first place.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top