juantheron
- 243
- 1
If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $
The discussion focuses on the infinite series defined as \( y = \frac{3}{4} + \frac{3 \cdot 5}{4 \cdot 8} + \frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12} + \ldots \). The series converges to a value that can be expressed in terms of the Gamma function, specifically \( y = \frac{4}{\sqrt{\pi}} \left\{ \frac{\Gamma(\frac{3}{2})}{(\sqrt{(\frac{1}{2})}^{3}} - \Gamma(\frac{3}{2}) \right\} = 2(\sqrt{8} - 1) \). The discussion also highlights the application of Newton's generalized binomial theorem to derive the series' sum and emphasizes the importance of showing work when seeking help in mathematical problems.
PREREQUISITESMathematicians, students studying calculus or advanced algebra, and anyone interested in the convergence of infinite series and the application of special functions like the Gamma function.
jacks said:If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $
First hint: $y^2+2y = (y+1)^2 - 1$. So it will be helpful to find $y+1 = 1 + \frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+ \ldots.$jacks said:If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $
Opalg said:First hint: $y^2+2y = (y+1)^2 - 1$. So it will be helpful to find $y+1 = 1 + \frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+ \ldots.$
Second hint: This looks like a generalised binomial series. In fact, Newton's generalised binomial theorem states that $$(1+x)^s = 1 + \frac s1x + \frac{s(s-1)}{2!}x^2 + \frac{s(s-1)(s-2)}{3!}x^3 + \ldots$$ (and it converges provided that $|x|<1$). Can you force the series for $1+y$ into that form?
Third hint:$$1+y = 1 + \frac{-\frac32}1\bigl(-\tfrac12\bigr) + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr)}{2!}\bigl(-\tfrac12\bigr)^2 + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr) \bigl(-\frac72\bigr)}{3!}\bigl(-\tfrac12\bigr)^3 + \ldots\,.$$
anemone said:I wish I can give as many thanks as possible to you for this solution, Opalg!:p:)(Wink)