MHB Sum of Infinite Series: $y^2+2y$

juantheron
Messages
243
Reaction score
1
If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $
 
Mathematics news on Phys.org
Re: infinite series sum

Can you tell us what your efforts have been and where you are stuck? Posting a question without any work does not give our helpers a good place to begin to offer help other than to begin the problem, which you may have already done. I am sure you have tried to work the problem, so show our helpers what your efforts have been. This shows them where you may be going wrong, and how to best help.
 
jacks said:
If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $

First we write the series as $\displaystyle y= \sum_{n=1}^{\infty} a_{n}$, where the $a_{n}$ are the solution of the difference equation...

$\displaystyle a_{n+1}= a_{n}\ \frac{2n+3}{4\ (n+1)} = \frac{a_{n}}{2}\ \{1+\frac{1}{2 (n+1)}\},\ a_{0}=1$ (1)

Following the procedure described in...

http://www.mathhelpboards.com/f15/difference-equation-tutorial-draft-part-i-426/

... You find the solution of (1)...

$\displaystyle a_{n}= 2^{1 -n} \prod_{k=1}^{n} (1+\frac{1}{2 k})$ (2)

Now if You 'remember' the formula...

$\displaystyle \prod_{k=1}^{n} (1+\frac{1}{2 k}) = \frac{2}{\sqrt{\pi}}\ \frac{\Gamma(n + \frac{3}{2})}{\Gamma(n+1)}$ (3)

... You arrive to write...

$\displaystyle y = \frac{2}{\sqrt{\pi}}\ \sum_{n=1}^{\infty} \frac{\Gamma(n + \frac{3}{2})}{\Gamma(n+1)}\ 2^{-n}$ (4)

... and 'remembering' also that is...

$\displaystyle \sum_{n=0}^{\infty} \frac{\Gamma(n+\frac{k}{2})}{\Gamma(n+1)}\ x^{n} = \frac{\Gamma(\frac{k}{2})}{(\sqrt{1-x})^{k}}$ (5)

... and... $\displaystyle \Gamma(\frac{3}{2})= \frac{\sqrt{\pi}}{2}$ (6)

... You obtain finally...

$\displaystyle y=\frac{4}{\sqrt{\pi}} \{\frac{\Gamma(\frac{3}{2})}{(\sqrt{(\frac{1}{2}})^{3}}-\Gamma (\frac{3}{2})\}= 2\ (\sqrt{8}-1)$ (7)

Of course the problem is not trivial and I'm a little surprised that it has been proposed in the Pre-Algebra forum...

Kind regards

$\chi$ $\sigma$
 
Last edited:
jacks said:
If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $
First hint: $y^2+2y = (y+1)^2 - 1$. So it will be helpful to find $y+1 = 1 + \frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+ \ldots.$

Second hint: This looks like a generalised binomial series. In fact, Newton's generalised binomial theorem states that $$(1+x)^s = 1 + \frac s1x + \frac{s(s-1)}{2!}x^2 + \frac{s(s-1)(s-2)}{3!}x^3 + \ldots$$ (and it converges provided that $|x|<1$). Can you force the series for $1+y$ into that form?

Third hint:
$$1+y = 1 + \frac{-\frac32}1\bigl(-\tfrac12\bigr) + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr)}{2!}\bigl(-\tfrac12\bigr)^2 + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr) \bigl(-\frac72\bigr)}{3!}\bigl(-\tfrac12\bigr)^3 + \ldots\,.$$
 
Opalg said:
First hint: $y^2+2y = (y+1)^2 - 1$. So it will be helpful to find $y+1 = 1 + \frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+ \ldots.$

Second hint: This looks like a generalised binomial series. In fact, Newton's generalised binomial theorem states that $$(1+x)^s = 1 + \frac s1x + \frac{s(s-1)}{2!}x^2 + \frac{s(s-1)(s-2)}{3!}x^3 + \ldots$$ (and it converges provided that $|x|<1$). Can you force the series for $1+y$ into that form?

Third hint:
$$1+y = 1 + \frac{-\frac32}1\bigl(-\tfrac12\bigr) + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr)}{2!}\bigl(-\tfrac12\bigr)^2 + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr) \bigl(-\frac72\bigr)}{3!}\bigl(-\tfrac12\bigr)^3 + \ldots\,.$$

I wish I can give as many thanks as possible to you for this solution, Opalg!:p:)(Wink)
 
anemone said:
I wish I can give as many thanks as possible to you for this solution, Opalg!:p:)(Wink)

Yes, Opalg is certainly one of our best helpers, both in the depth of his knowledge, and also in the lucidity of his posts. We are most fortunate that he is a member here. (Yes)

It is nice when our members take the time to comment on this, and while our helpers do what they do not for accolades, but for the desire to simply be helpful, such comments are certainly appreciated. (Cool)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
7
Views
2K
Replies
3
Views
2K
Replies
20
Views
2K
Replies
1
Views
2K
Replies
3
Views
1K
Replies
6
Views
2K
Replies
6
Views
2K
Back
Top