Sum of Infinite Series: $y^2+2y$

Click For Summary

Discussion Overview

The discussion revolves around the sum of an infinite series represented as \( y = \frac{3}{4} + \frac{3 \cdot 5}{4 \cdot 8} + \frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12} + \ldots \) and seeks to explore the expression \( y^2 + 2y \). Participants engage in various approaches to analyze the series, including difference equations and generalized binomial series.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Homework-related

Main Points Raised

  • One participant presents the series and seeks to find \( y^2 + 2y \) without providing initial work.
  • Another participant requests clarification on the original poster's efforts to help guide the discussion.
  • A participant reformulates the series as a solution to a difference equation, providing a detailed derivation of the terms involved.
  • Hints are provided regarding the structure of \( y^2 + 2y \) and suggest that it can be expressed in terms of \( (y+1)^2 - 1 \).
  • There is a suggestion that the series resembles a generalized binomial series, referencing Newton's generalized binomial theorem.
  • Expressions involving the Gamma function are introduced as part of the solution process.
  • Participants express appreciation for contributions from others, particularly highlighting the clarity and depth of explanations provided by a specific member.

Areas of Agreement / Disagreement

There is no consensus on a final solution or approach to the problem. Multiple perspectives and methods are presented, with participants engaging in hints and suggestions rather than reaching a definitive conclusion.

Contextual Notes

The discussion includes complex mathematical expressions and references to advanced concepts such as difference equations and the Gamma function, which may not be fully accessible to all participants. There are also indications of missing initial work from the original poster.

juantheron
Messages
243
Reaction score
1
If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $
 
Physics news on Phys.org
Re: infinite series sum

Can you tell us what your efforts have been and where you are stuck? Posting a question without any work does not give our helpers a good place to begin to offer help other than to begin the problem, which you may have already done. I am sure you have tried to work the problem, so show our helpers what your efforts have been. This shows them where you may be going wrong, and how to best help.
 
jacks said:
If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $

First we write the series as $\displaystyle y= \sum_{n=1}^{\infty} a_{n}$, where the $a_{n}$ are the solution of the difference equation...

$\displaystyle a_{n+1}= a_{n}\ \frac{2n+3}{4\ (n+1)} = \frac{a_{n}}{2}\ \{1+\frac{1}{2 (n+1)}\},\ a_{0}=1$ (1)

Following the procedure described in...

http://www.mathhelpboards.com/f15/difference-equation-tutorial-draft-part-i-426/

... You find the solution of (1)...

$\displaystyle a_{n}= 2^{1 -n} \prod_{k=1}^{n} (1+\frac{1}{2 k})$ (2)

Now if You 'remember' the formula...

$\displaystyle \prod_{k=1}^{n} (1+\frac{1}{2 k}) = \frac{2}{\sqrt{\pi}}\ \frac{\Gamma(n + \frac{3}{2})}{\Gamma(n+1)}$ (3)

... You arrive to write...

$\displaystyle y = \frac{2}{\sqrt{\pi}}\ \sum_{n=1}^{\infty} \frac{\Gamma(n + \frac{3}{2})}{\Gamma(n+1)}\ 2^{-n}$ (4)

... and 'remembering' also that is...

$\displaystyle \sum_{n=0}^{\infty} \frac{\Gamma(n+\frac{k}{2})}{\Gamma(n+1)}\ x^{n} = \frac{\Gamma(\frac{k}{2})}{(\sqrt{1-x})^{k}}$ (5)

... and... $\displaystyle \Gamma(\frac{3}{2})= \frac{\sqrt{\pi}}{2}$ (6)

... You obtain finally...

$\displaystyle y=\frac{4}{\sqrt{\pi}} \{\frac{\Gamma(\frac{3}{2})}{(\sqrt{(\frac{1}{2}})^{3}}-\Gamma (\frac{3}{2})\}= 2\ (\sqrt{8}-1)$ (7)

Of course the problem is not trivial and I'm a little surprised that it has been proposed in the Pre-Algebra forum...

Kind regards

$\chi$ $\sigma$
 
Last edited:
jacks said:
If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $
First hint: $y^2+2y = (y+1)^2 - 1$. So it will be helpful to find $y+1 = 1 + \frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+ \ldots.$

Second hint: This looks like a generalised binomial series. In fact, Newton's generalised binomial theorem states that $$(1+x)^s = 1 + \frac s1x + \frac{s(s-1)}{2!}x^2 + \frac{s(s-1)(s-2)}{3!}x^3 + \ldots$$ (and it converges provided that $|x|<1$). Can you force the series for $1+y$ into that form?

Third hint:
$$1+y = 1 + \frac{-\frac32}1\bigl(-\tfrac12\bigr) + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr)}{2!}\bigl(-\tfrac12\bigr)^2 + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr) \bigl(-\frac72\bigr)}{3!}\bigl(-\tfrac12\bigr)^3 + \ldots\,.$$
 
Opalg said:
First hint: $y^2+2y = (y+1)^2 - 1$. So it will be helpful to find $y+1 = 1 + \frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+ \ldots.$

Second hint: This looks like a generalised binomial series. In fact, Newton's generalised binomial theorem states that $$(1+x)^s = 1 + \frac s1x + \frac{s(s-1)}{2!}x^2 + \frac{s(s-1)(s-2)}{3!}x^3 + \ldots$$ (and it converges provided that $|x|<1$). Can you force the series for $1+y$ into that form?

Third hint:
$$1+y = 1 + \frac{-\frac32}1\bigl(-\tfrac12\bigr) + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr)}{2!}\bigl(-\tfrac12\bigr)^2 + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr) \bigl(-\frac72\bigr)}{3!}\bigl(-\tfrac12\bigr)^3 + \ldots\,.$$

I wish I can give as many thanks as possible to you for this solution, Opalg!:p:)(Wink)
 
anemone said:
I wish I can give as many thanks as possible to you for this solution, Opalg!:p:)(Wink)

Yes, Opalg is certainly one of our best helpers, both in the depth of his knowledge, and also in the lucidity of his posts. We are most fortunate that he is a member here. (Yes)

It is nice when our members take the time to comment on this, and while our helpers do what they do not for accolades, but for the desire to simply be helpful, such comments are certainly appreciated. (Cool)
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K