juantheron
- 243
- 1
If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $
The discussion revolves around the sum of an infinite series represented as \( y = \frac{3}{4} + \frac{3 \cdot 5}{4 \cdot 8} + \frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12} + \ldots \) and seeks to explore the expression \( y^2 + 2y \). Participants engage in various approaches to analyze the series, including difference equations and generalized binomial series.
There is no consensus on a final solution or approach to the problem. Multiple perspectives and methods are presented, with participants engaging in hints and suggestions rather than reaching a definitive conclusion.
The discussion includes complex mathematical expressions and references to advanced concepts such as difference equations and the Gamma function, which may not be fully accessible to all participants. There are also indications of missing initial work from the original poster.
jacks said:If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $
First hint: $y^2+2y = (y+1)^2 - 1$. So it will be helpful to find $y+1 = 1 + \frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+ \ldots.$jacks said:If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $
Opalg said:First hint: $y^2+2y = (y+1)^2 - 1$. So it will be helpful to find $y+1 = 1 + \frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+ \ldots.$
Second hint: This looks like a generalised binomial series. In fact, Newton's generalised binomial theorem states that $$(1+x)^s = 1 + \frac s1x + \frac{s(s-1)}{2!}x^2 + \frac{s(s-1)(s-2)}{3!}x^3 + \ldots$$ (and it converges provided that $|x|<1$). Can you force the series for $1+y$ into that form?
Third hint:$$1+y = 1 + \frac{-\frac32}1\bigl(-\tfrac12\bigr) + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr)}{2!}\bigl(-\tfrac12\bigr)^2 + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr) \bigl(-\frac72\bigr)}{3!}\bigl(-\tfrac12\bigr)^3 + \ldots\,.$$
anemone said:I wish I can give as many thanks as possible to you for this solution, Opalg!:p:)(Wink)