juantheron
- 243
- 1
If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $
jacks said:If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $
First hint: $y^2+2y = (y+1)^2 - 1$. So it will be helpful to find $y+1 = 1 + \frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+ \ldots.$jacks said:If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $
Opalg said:First hint: $y^2+2y = (y+1)^2 - 1$. So it will be helpful to find $y+1 = 1 + \frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+ \ldots.$
Second hint: This looks like a generalised binomial series. In fact, Newton's generalised binomial theorem states that $$(1+x)^s = 1 + \frac s1x + \frac{s(s-1)}{2!}x^2 + \frac{s(s-1)(s-2)}{3!}x^3 + \ldots$$ (and it converges provided that $|x|<1$). Can you force the series for $1+y$ into that form?
Third hint:$$1+y = 1 + \frac{-\frac32}1\bigl(-\tfrac12\bigr) + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr)}{2!}\bigl(-\tfrac12\bigr)^2 + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr) \bigl(-\frac72\bigr)}{3!}\bigl(-\tfrac12\bigr)^3 + \ldots\,.$$
anemone said:I wish I can give as many thanks as possible to you for this solution, Opalg!:p:)(Wink)