MHB Sum of two inverse tangent functions

Click For Summary
The discussion focuses on proving that the sum of two inverse tangent functions, specifically $$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3}$$, equals $$\frac{\pi}{4}$$ by utilizing the product of complex numbers. The calculation involves manipulating the complex number product $$z = (2+i)(3+i)$$ to derive the desired result. The proof demonstrates an efficient approach to combining inverse tangent values through complex number representation. This method highlights the relationship between complex numbers and trigonometric functions. The conclusion confirms the validity of the equation, showcasing the elegance of mathematical relationships.
DreamWeaver
Messages
297
Reaction score
0
By considering the product of complex numbers:

$$z = (2+i)(3+i)$$

Show that

$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \frac{\pi}{4}$$
 
Mathematics news on Phys.org
$$(2+i)(3+i) = 5+5i = \sqrt{50}e^{i \arctan (1)} = \sqrt{50}e^{i \frac{\pi}{4}}$$

$$ (2+i)(3+i) = \sqrt{5} e^{i \arctan (\frac{1}{2})} \sqrt{10} e^{i \arctan (\frac{1}{3})} = \sqrt{50} e^{i [\arctan (\frac{1}{2}) + i \arctan(\frac{1}{3})]}$$

Therefore,

$$ \frac{\pi}{4} = \arctan \left( \frac{1}{2}\right) + \arctan \left(\frac{1}{3} \right)$$
 
Random Variable said:
$$(2+i)(3+i) = 5+5i = \sqrt{50}e^{i \arctan (1)} = \sqrt{50}e^{i \frac{\pi}{4}}$$

$$ (2+i)(3+i) = \sqrt{5} e^{i \arctan (\frac{1}{2})} \sqrt{10} e^{i \arctan (\frac{1}{3})} = \sqrt{50} e^{i [\arctan (\frac{1}{2}) + i \arctan(\frac{1}{3})]}$$

Therefore,

$$ \frac{\pi}{4} = \arctan \left( \frac{1}{2}\right) + \arctan \left(\frac{1}{3} \right)$$

Very efficient! But then, I'd expect nothing less from you. (Yes)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 59 ·
2
Replies
59
Views
32K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K