MHB Sum of two inverse tangent functions

DreamWeaver
Messages
297
Reaction score
0
By considering the product of complex numbers:

$$z = (2+i)(3+i)$$

Show that

$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \frac{\pi}{4}$$
 
Mathematics news on Phys.org
$$(2+i)(3+i) = 5+5i = \sqrt{50}e^{i \arctan (1)} = \sqrt{50}e^{i \frac{\pi}{4}}$$

$$ (2+i)(3+i) = \sqrt{5} e^{i \arctan (\frac{1}{2})} \sqrt{10} e^{i \arctan (\frac{1}{3})} = \sqrt{50} e^{i [\arctan (\frac{1}{2}) + i \arctan(\frac{1}{3})]}$$

Therefore,

$$ \frac{\pi}{4} = \arctan \left( \frac{1}{2}\right) + \arctan \left(\frac{1}{3} \right)$$
 
Random Variable said:
$$(2+i)(3+i) = 5+5i = \sqrt{50}e^{i \arctan (1)} = \sqrt{50}e^{i \frac{\pi}{4}}$$

$$ (2+i)(3+i) = \sqrt{5} e^{i \arctan (\frac{1}{2})} \sqrt{10} e^{i \arctan (\frac{1}{3})} = \sqrt{50} e^{i [\arctan (\frac{1}{2}) + i \arctan(\frac{1}{3})]}$$

Therefore,

$$ \frac{\pi}{4} = \arctan \left( \frac{1}{2}\right) + \arctan \left(\frac{1}{3} \right)$$

Very efficient! But then, I'd expect nothing less from you. (Yes)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top