Can Sum to Product Inequalities Hold for Non-Negative Reals?

Click For Summary
SUMMARY

The discussion centers on the proof of the inequality involving non-negative reals, specifically that if the sum of non-negative reals $\alpha_1, \alpha_2, ..., \alpha_n$ is less than or equal to $\frac{1}{2}$, then the product $(1-\alpha_1)(1-\alpha_2)...(1-\alpha_n)$ is greater than or equal to $\frac{1}{2}$. Participants express appreciation for the solutions provided, particularly by user June29, and inquire about proving the statement through induction.

PREREQUISITES
  • Understanding of inequalities in real analysis
  • Familiarity with the properties of non-negative real numbers
  • Basic knowledge of mathematical induction
  • Experience with product and sum relationships in mathematics
NEXT STEPS
  • Study the principles of mathematical induction in depth
  • Explore advanced inequalities in real analysis
  • Investigate the implications of the product-sum inequalities
  • Review examples of proofs involving non-negative reals
USEFUL FOR

Mathematicians, students studying real analysis, and anyone interested in advanced inequality proofs will benefit from this discussion.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Given non-negative reals, $\alpha_i$, where $i = 1,2,...,n.$

Prove, that

$\alpha_1+\alpha_2+...+\alpha_n \leq \frac{1}{2}$ $\Rightarrow$ $(1-\alpha_1)(1-\alpha_2)...(1-\alpha_n) \geq \frac{1}{2}.$
 
Physics news on Phys.org
Immediate consequence of Weiertrass inequality:

$$\prod_{1 \le k \le n}(1-a_k) \ge 1-\sum_{1 \le k \le n}a_k \ge 1-\frac{1}{2} = \frac{1}{2}.$$

There's an elegant proof of Weierstrass inequality.
 
June29 said:
Immediate consequence of Weiertrass inequality:

$$\prod_{1 \le k \le n}(1-a_k) \ge 1-\sum_{1 \le k \le n}a_k \ge 1-\frac{1}{2} = \frac{1}{2}.$$

There's an elegant proof of Weierstrass inequality.
Thankyou for a clever solution, June29, and for your participation!(Cool)
 
Can anyone prove the above statement by induction? (Wave)
 
lfdahl said:
Can anyone prove the above statement by induction? (Wave)

It's obviously true for $n=1$ since we have $ {\alpha}_1 \leqslant \frac{1}{2} = 1-\frac{1}{2} \implies 1-\alpha_1 \geqslant \frac{1}{2}. $

Now, suppose it's true for $n = k \in \mathbb{N}$. We shall prove that it's true for $n=k+1$. $\displaystyle \begin{aligned} \frac{1}{2} & \leqslant 1- \sum_{1 \leqslant j \leqslant k+1}\alpha_j = 1-\alpha_{k+1}-\sum_{1 \leqslant j \leqslant k}\alpha_j \leqslant 1-\alpha_{k+1}-\sum_{1 \leqslant j \leqslant k}\alpha_j+a_{k+1}\sum_{1 \leqslant j \leqslant k} \alpha_j \\& =\left(1-\alpha_{k+1}\right)\left(1-\sum_{1 \leqslant j \leqslant k} \alpha_j\right)
\leqslant \left(1-\alpha_{k+1}\right) \prod_{1 \leqslant j \leqslant k} \left(1-\alpha_j \right) = \prod_{1 \leqslant j \leqslant k+1} \left(1-\alpha_j \right) \end{aligned} $

So it's true for $n=k+1$. Since it's true for $n=1, k+1$, it's true for all $n\in\mathbb{N}$.
 
Last edited by a moderator:
June29 said:
It's obviously true for $n=1$ since we have $ {\alpha}_1 \leqslant \frac{1}{2} = 1-\frac{1}{2} \implies 1-\alpha_1 \geqslant \frac{1}{2}. $

Now, suppose it's true for $n = k \in \mathbb{N}$. We shall prove that it's true for $n=k+1$. $\displaystyle \begin{aligned} \frac{1}{2} & \leqslant 1- \sum_{1 \leqslant j \leqslant k+1}\alpha_j = 1-\alpha_{k+1}-\sum_{1 \leqslant j \leqslant k}\alpha_j \leqslant 1-\alpha_{k+1}-\sum_{1 \leqslant j \leqslant k}\alpha_j+a_{k+1}\sum_{1 \leqslant j \leqslant k} \alpha_j \\& =\left(1-\alpha_{k+1}\right)\left(1-\sum_{1 \leqslant j \leqslant k} \alpha_j\right)
\leqslant \left(1-\alpha_{k+1}\right) \prod_{1 \leqslant j \leqslant k} \left(1-\alpha_j \right) = \prod_{1 \leqslant j \leqslant k+1} \left(1-\alpha_j \right) \end{aligned} $

So it's true for $n=k+1$. Since it's true for $n=1, k+1$, it's true for all $n\in\mathbb{N}$.

A nice solution, June29! Thankyou for your participation!

Please remember to hide your solution in SP tags. Other forum users might try to solve the challenge preferably without knowing your solution. Thankyou in advance!
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
1
Views
2K